Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error when running install script example: Placeholder storage has not been allocated on MPS device! #202

Open
jaanli opened this issue Oct 14, 2024 · 1 comment

Comments

@jaanli
Copy link

jaanli commented Oct 14, 2024

After running this:

from melo.api import TTS

# Speed is adjustable
speed = 1.0
device = 'cpu' # or cuda:0

text = "我最近在学习machine learning,希望能够在未来的artificial intelligence领域有所建树。"
model = TTS(language='ZH', device=device)
speaker_ids = model.hps.data.spk2id

output_path = 'zh.wav'
model.tts_to_file(text, speaker_ids['ZH'], output_path, speed=speed)

From the instructions: https://github.com/myshell-ai/MeloTTS/blob/main/docs/install.md

This error results:

---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Cell In[2], [line 12](vscode-notebook-cell:?execution_count=2&line=12)
      [9](vscode-notebook-cell:?execution_count=2&line=9) speaker_ids = model.hps.data.spk2id
     [11](vscode-notebook-cell:?execution_count=2&line=11) output_path = 'zh.wav'
---> [12](vscode-notebook-cell:?execution_count=2&line=12) model.tts_to_file(text, speaker_ids['ZH'], output_path, speed=speed)

File ~/projects/MeloTTS/melo/api.py:100, in TTS.tts_to_file(self, text, speaker_id, output_path, sdp_ratio, noise_scale, noise_scale_w, speed, pbar, format, position, quiet)
     [98](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/api.py:98)     t = re.sub(r'([a-z])([A-Z])', r'\1 \2', t)
     [99](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/api.py:99) device = self.device
--> [100](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/api.py:100) bert, ja_bert, phones, tones, lang_ids = utils.get_text_for_tts_infer(t, language, self.hps, device, self.symbol_to_id)
    [101](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/api.py:101) with torch.no_grad():
    [102](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/api.py:102)     x_tst = phones.to(device).unsqueeze(0)

File ~/projects/MeloTTS/melo/utils.py:38, in get_text_for_tts_infer(text, language_str, hps, device, symbol_to_id)
     [36](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/utils.py:36)     ja_bert = torch.zeros(768, len(phone))
     [37](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/utils.py:37) else:
---> [38](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/utils.py:38)     bert = get_bert(norm_text, word2ph, language_str, device)
     [39](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/utils.py:39)     del word2ph
     [40](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/utils.py:40)     assert bert.shape[-1] == len(phone), phone

File ~/projects/MeloTTS/melo/text/__init__.py:34, in get_bert(norm_text, word2ph, language, device)
     [30](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/text/__init__.py:30) from .korean import get_bert_feature as kr_bert
     [32](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/text/__init__.py:32) lang_bert_func_map = {"ZH": zh_bert, "EN": en_bert, "JP": jp_bert, 'ZH_MIX_EN': zh_mix_en_bert, 
     [33](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/projects/MeloTTS/melo/text/__init__.py:33)                       'FR': fr_bert, 'SP': sp_bert, 'ES': sp_bert, "KR": kr_bert}
...
   [2235](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/.pyenv/versions/3.10.14/lib/python3.10/site-packages/torch/nn/functional.py:2235)     # remove once script supports set_grad_enabled
   [2236](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/.pyenv/versions/3.10.14/lib/python3.10/site-packages/torch/nn/functional.py:2236)     _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
-> [2237](https://file+.vscode-resource.vscode-cdn.net/Users/me/projects/pronunciation-exploration/~/.pyenv/versions/3.10.14/lib/python3.10/site-packages/torch/nn/functional.py:2237) return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)

RuntimeError: Placeholder storage has not been allocated on MPS device!

Does anyone else experience this? Any tips on debugging?

@bmd080
Copy link

bmd080 commented Jan 10, 2025

modify follow file
melo/text/chinese_bert.py

################### bug code #################################
def get_bert_feature(text, word2ph, device=None, model_id='hfl/chinese-roberta-wwm-ext-large'):
if model_id not in models:
models[model_id] = AutoModelForMaskedLM.from_pretrained(
model_id
).to(device)
tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id)
model = models[model_id]
tokenizer = tokenizers[model_id]

if (
    sys.platform == "darwin"
    and torch.backends.mps.is_available()
    and device == "cpu"
):
    device = "mps"
if not device:
    device = "cuda"

################### fix code #################################
def get_bert_feature(text, word2ph, device=None, model_id='hfl/chinese-roberta-wwm-ext-large'):
global model
global tokenizer

if (
    sys.platform == "darwin"
    and torch.backends.mps.is_available()
    and device == "cpu"
):
    device = "mps"
if not device:
    device = "cuda"

if model_id not in models:
    models[model_id] = AutoModelForMaskedLM.from_pretrained(
        model_id
    ).to(device)
    tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id)
model = models[model_id]
tokenizer = tokenizers[model_id]

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants