-
Notifications
You must be signed in to change notification settings - Fork 30
/
metric.cpp
497 lines (417 loc) · 15.1 KB
/
metric.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/*
Metric
Copyright (C) 2006-2011 Yangli Hector Yee
Copyright (C) 2011-2016 Steven Myint, Jeff Terrace
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "metric.h"
#include "lpyramid.h"
#include "rgba_image.h"
#include <ciso646>
#include <cmath>
#include <cstddef>
#include <iostream>
#include <vector>
#include <algorithm>
namespace pdiff
{
#if _MSC_VER <= 1800
static const auto pi = 3.14159265f;
static float to_radians(const float degrees) // LCOV_EXCL_LINE
{
return degrees * pi / 180.f; // LCOV_EXCL_LINE
}
static float to_degrees(const float radians) // LCOV_EXCL_LINE
{
return radians * 180.f / pi; // LCOV_EXCL_LINE
}
#else
constexpr auto pi = 3.14159265f;
constexpr float to_radians(const float degrees) // LCOV_EXCL_LINE
{
return degrees * pi / 180.f; // LCOV_EXCL_LINE
}
constexpr float to_degrees(const float radians) // LCOV_EXCL_LINE
{
return radians * 180.f / pi; // LCOV_EXCL_LINE
}
#endif
// Given the adaptation luminance, this function returns the
// threshold of visibility in cd per m^2.
//
// TVI means Threshold vs Intensity function.
// This version comes from Ward Larson Siggraph 1997.
//
// Returns the threshold luminance given the adaptation luminance.
// Units are candelas per meter squared.
static float tvi(const float adaptation_luminance)
{
const auto log_a = log10f(adaptation_luminance);
float r;
if (log_a < -3.94f)
{
r = -2.86f;
}
else if (log_a < -1.44f)
{
r = powf(0.405f * log_a + 1.6f, 2.18f) - 2.86f;
}
else if (log_a < -0.0184f)
{
r = log_a - 0.395f;
}
else if (log_a < 1.9f)
{
r = powf(0.249f * log_a + 0.65f, 2.7f) - 0.72f;
}
else
{
r = log_a - 1.255f;
}
return powf(10.0f, r);
}
// computes the contrast sensitivity function (Barten SPIE 1989)
// given the cycles per degree (cpd) and luminance (lum)
static float csf(const float cpd, const float lum)
{
const auto a = 440.f * powf((1.f + 0.7f / lum), -0.2f);
const auto b = 0.3f * powf((1.0f + 100.0f / lum), 0.15f);
return a * cpd * expf(-b * cpd) * sqrtf(1.0f + 0.06f * expf(b * cpd));
}
/*
* Visual Masking Function
* from Daly 1993
*/
static float mask(const float contrast)
{
const auto a = powf(392.498f * contrast, 0.7f);
const auto b = powf(0.0153f * a, 4.f);
return powf(1.0f + b, 0.25f);
}
// convert Adobe RGB (1998) with reference white D65 to XYZ
static void adobe_rgb_to_xyz(const float r, const float g, const float b,
float &x, float &y, float &z)
{
// matrix is from http://www.brucelindbloom.com/
x = r * 0.576700f + g * 0.185556f + b * 0.188212f;
y = r * 0.297361f + g * 0.627355f + b * 0.0752847f;
z = r * 0.0270328f + g * 0.0706879f + b * 0.991248f;
}
struct White
{
White()
{
adobe_rgb_to_xyz(1.f, 1.f, 1.f, x, y, z);
}
float x;
float y;
float z;
};
static const White global_white;
static void xyz_to_lab(const float x, const float y, const float z,
float &l, float &a, float &b)
{
const float epsilon = 216.0f / 24389.0f;
const float kappa = 24389.0f / 27.0f;
const float r[] = {
x / global_white.x,
y / global_white.y,
z / global_white.z
};
float f[3];
for (auto i = 0u; i < 3; i++)
{
if (r[i] > epsilon)
{
f[i] = powf(r[i], 1.0f / 3.0f);
}
else
{
f[i] = (kappa * r[i] + 16.0f) / 116.0f;
}
}
l = 116.0f * f[1] - 16.0f;
a = 500.0f * (f[0] - f[1]);
b = 200.0f * (f[1] - f[2]);
}
static unsigned int adaptation(const float num_one_degree_pixels)
{
auto num_pixels = 1.f;
auto adaptation_level = 0u;
for (auto i = 0u; i < MAX_PYR_LEVELS; i++)
{
adaptation_level = i;
if (num_pixels > num_one_degree_pixels)
{
break;
}
num_pixels *= 2;
}
return adaptation_level; // LCOV_EXCL_LINE
}
PerceptualDiffParameters::PerceptualDiffParameters()
: luminance_only(false),
field_of_view(45.0f),
gamma(2.2f),
luminance(100.0f),
threshold_pixels(100),
color_factor(1.0f)
{
}
bool yee_compare(const RGBAImage &image_a,
const RGBAImage &image_b,
const PerceptualDiffParameters &args,
size_t *const output_num_pixels_failed,
float *const output_error_sum,
std::string *const output_reason,
RGBAImage *const output_image_difference,
std::ostream *const output_verbose)
{
if ((image_a.get_width() != image_b.get_width()) or
(image_a.get_height() != image_b.get_height()))
{
if (output_reason)
{
*output_reason = "Image dimensions do not match\n";
}
return false;
}
const auto w = image_a.get_width();
const auto h = image_a.get_height();
const auto dim = w * h;
auto identical = true;
for (auto i = 0u; i < dim; i++)
{
if (image_a.get(i) != image_b.get(i))
{
identical = false;
break;
}
}
if (identical)
{
if (output_reason)
{
*output_reason = "Images are binary identical\n";
}
return true;
}
// Assuming colorspaces are in Adobe RGB (1998) convert to XYZ.
std::vector<float> a_lum(dim);
std::vector<float> b_lum(dim);
std::vector<float> a_a(dim);
std::vector<float> b_a(dim);
std::vector<float> a_b(dim);
std::vector<float> b_b(dim);
if (output_verbose)
{
*output_verbose << "Converting RGB to XYZ\n";
}
const auto gamma = args.gamma;
const auto luminance = args.luminance;
#pragma omp parallel for shared(args, a_lum, b_lum, a_a, a_b, b_a, b_b)
for (auto y = 0; y < static_cast<ptrdiff_t>(h); y++)
{
for (auto x = 0u; x < w; x++)
{
const auto i = x + y * w;
// perceptualdiff used to use premultiplied alphas when loading
// the image. This is no longer the case since the switch to
// FreeImage. We need to do the multiplication here now. As was
// the case with premultiplied alphas, differences in alphas
// won't be detected where the color is black.
const auto a_alpha = image_a.get_alpha(i) / 255.f;
const auto a_color_r = powf(
image_a.get_red(i) / 255.f * a_alpha,
gamma);
const auto a_color_g = powf(
image_a.get_green(i) / 255.f * a_alpha,
gamma);
const auto a_color_b = powf(
image_a.get_blue(i) / 255.f * a_alpha,
gamma);
float a_x;
float a_y;
float a_z;
adobe_rgb_to_xyz(a_color_r, a_color_g, a_color_b,
a_x, a_y, a_z);
float l;
xyz_to_lab(a_x, a_y, a_z, l, a_a[i], a_b[i]);
const auto b_alpha = image_b.get_alpha(i) / 255.f;
const auto b_color_r = powf(
image_b.get_red(i) / 255.f * b_alpha,
gamma);
const auto b_color_g = powf(
image_b.get_green(i) / 255.f * b_alpha,
gamma);
const auto b_color_b = powf(
image_b.get_blue(i) / 255.f * b_alpha,
gamma);
float b_x;
float b_y;
float b_z;
adobe_rgb_to_xyz(b_color_r, b_color_g, b_color_b,
b_x, b_y, b_z);
xyz_to_lab(b_x, b_y, b_z, l, b_a[i], b_b[i]);
a_lum[i] = a_y * luminance;
b_lum[i] = b_y * luminance;
}
}
const auto num_one_degree_pixels =
to_degrees(2 *
std::tan(args.field_of_view * to_radians(.5f)));
const auto pixels_per_degree = w / num_one_degree_pixels;
if (output_verbose)
{
*output_verbose << "Performing test\n";
}
const auto adaptation_level = adaptation(num_one_degree_pixels);
float cpd[MAX_PYR_LEVELS];
cpd[0] = 0.5f * pixels_per_degree;
for (auto i = 1u; i < MAX_PYR_LEVELS; i++)
{
cpd[i] = 0.5f * cpd[i - 1];
}
const auto csf_max = csf(3.248f, 100.0f);
static_assert(MAX_PYR_LEVELS > 2,
"MAX_PYR_LEVELS must be greater than 2");
float f_freq[MAX_PYR_LEVELS - 2];
for (auto i = 0u; i < MAX_PYR_LEVELS - 2; i++)
{
f_freq[i] = csf_max / csf(cpd[i], 100.0f);
}
auto pixels_failed = 0u;
auto error_sum = 0.;
if (output_verbose)
{
*output_verbose << "Constructing Laplacian Pyramids\n";
}
try
{
const LPyramid la(a_lum, w, h);
const LPyramid lb(b_lum, w, h);
#pragma omp parallel for reduction(+ : pixels_failed, error_sum) \
shared(args, a_a, a_b, b_a, b_b, cpd, f_freq)
for (auto y = 0; y < static_cast<ptrdiff_t>(h); y++)
{
for (auto x = 0u; x < w; x++)
{
const auto index = y * w + x;
const auto adapt =
std::max((la.get_value(x, y, adaptation_level) +
lb.get_value(x, y, adaptation_level)) *
0.5f,
1e-5f);
auto sum_contrast = 0.f;
auto factor = 0.f;
for (auto i = 0u; i < MAX_PYR_LEVELS - 2; i++)
{
const auto n1 = std::abs(la.get_value(x, y, i) -
la.get_value(x, y, i + 1));
const auto n2 = std::abs(lb.get_value(x, y, i) -
lb.get_value(x, y, i + 1));
const auto numerator = std::max(n1, n2);
const auto d1 = std::abs(la.get_value(x, y, i + 2));
const auto d2 = std::abs(lb.get_value(x, y, i + 2));
const auto denominator =
std::max(std::max(d1, d2), 1e-5f);
const auto contrast = numerator / denominator;
const auto f_mask =
mask(contrast * csf(cpd[i], adapt));
factor += contrast * f_freq[i] * f_mask;
sum_contrast += contrast;
}
sum_contrast = std::max(sum_contrast, 1e-5f);
factor /= sum_contrast;
factor = std::min(std::max(factor, 1.f), 10.f);
const auto delta = std::abs(la.get_value(x, y, 0) -
lb.get_value(x, y, 0));
error_sum += delta;
auto pass = true;
// Pure luminance test.
if (delta > factor * tvi(adapt))
{
pass = false;
}
if (not args.luminance_only)
{
// CIE delta E test with modifications.
auto color_scale = args.color_factor;
// Ramp down the color test in scotopic regions.
if (adapt < 10.0f)
{
// Don't do color test at all.
color_scale = 0.0;
}
const auto da = a_a[index] - b_a[index];
const auto db = a_b[index] - b_b[index];
const auto delta_e = (da * da + db * db) * color_scale;
error_sum += delta_e;
if (delta_e > factor)
{
pass = false;
}
}
if (pass)
{
if (output_image_difference)
{
output_image_difference->set(0, 0, 0, 255, index);
}
}
else
{
pixels_failed++;
if (output_image_difference)
{
output_image_difference->set(255, 0, 0, 255,
index);
}
}
}
}
}
catch (const std::bad_alloc &)
{
if (output_reason)
{
*output_reason = "Failed to Construct Laplacian pyramids. Out "
"of memory.\n";
return false;
}
}
const auto different =
std::to_string(pixels_failed) + " pixels are different\n";
const auto passed = pixels_failed < args.threshold_pixels;
if (output_reason)
{
if (passed)
{
*output_reason =
"Images are perceptually indistinguishable\n" + different;
}
else
{
*output_reason = "Images are visibly different\n" + different;
}
}
if (output_num_pixels_failed)
{
*output_num_pixels_failed = pixels_failed;
}
if (output_error_sum)
{
*output_error_sum = error_sum;
}
return passed;
}
}