forked from researchmm/STTN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
149 lines (126 loc) · 4.85 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# -*- coding: utf-8 -*-
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import math
import time
import importlib
import os
import argparse
import copy
import datetime
import random
import sys
import json
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.utils.model_zoo as model_zoo
from torchvision import models
import torch.multiprocessing as mp
from torchvision import transforms
# My libs
from core.utils import Stack, ToTorchFormatTensor
parser = argparse.ArgumentParser(description="STTN")
parser.add_argument("-v", "--video", type=str, required=True)
parser.add_argument("-m", "--mask", type=str, required=True)
parser.add_argument("-c", "--ckpt", type=str, required=True)
parser.add_argument("--model", type=str, default='sttn')
args = parser.parse_args()
w, h = 432, 240
ref_length = 10
neighbor_stride = 5
default_fps = 24
_to_tensors = transforms.Compose([
Stack(),
ToTorchFormatTensor()])
# sample reference frames from the whole video
def get_ref_index(neighbor_ids, length):
ref_index = []
for i in range(0, length, ref_length):
if not i in neighbor_ids:
ref_index.append(i)
return ref_index
# read frame-wise masks
def read_mask(mpath):
masks = []
mnames = os.listdir(mpath)
mnames.sort()
for m in mnames:
m = Image.open(os.path.join(mpath, m))
m = m.resize((w, h), Image.NEAREST)
m = np.array(m.convert('L'))
m = np.array(m > 0).astype(np.uint8)
m = cv2.dilate(m, cv2.getStructuringElement(
cv2.MORPH_CROSS, (3, 3)), iterations=4)
masks.append(Image.fromarray(m*255))
return masks
# read frames from video
def read_frame_from_videos(vname):
frames = []
vidcap = cv2.VideoCapture(vname)
success, image = vidcap.read()
count = 0
while success:
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
frames.append(image.resize((w,h)))
success, image = vidcap.read()
count += 1
return frames
def main_worker():
# set up models
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
net = importlib.import_module('model.' + args.model)
model = net.InpaintGenerator().to(device)
model_path = args.ckpt
data = torch.load(args.ckpt, map_location=device)
model.load_state_dict(data['netG'])
print('loading from: {}'.format(args.ckpt))
model.eval()
# prepare datset, encode all frames into deep space
frames = read_frame_from_videos(args.video)
video_length = len(frames)
feats = _to_tensors(frames).unsqueeze(0)*2-1
frames = [np.array(f).astype(np.uint8) for f in frames]
masks = read_mask(args.mask)
binary_masks = [np.expand_dims((np.array(m) != 0).astype(np.uint8), 2) for m in masks]
masks = _to_tensors(masks).unsqueeze(0)
feats, masks = feats.to(device), masks.to(device)
comp_frames = [None]*video_length
with torch.no_grad():
feats = model.encoder((feats*(1-masks).float()).view(video_length, 3, h, w))
_, c, feat_h, feat_w = feats.size()
feats = feats.view(1, video_length, c, feat_h, feat_w)
print('loading videos and masks from: {}'.format(args.video))
# completing holes by spatial-temporal transformers
for f in range(0, video_length, neighbor_stride):
neighbor_ids = [i for i in range(max(0, f-neighbor_stride), min(video_length, f+neighbor_stride+1))]
ref_ids = get_ref_index(neighbor_ids, video_length)
with torch.no_grad():
pred_feat = model.infer(
feats[0, neighbor_ids+ref_ids, :, :, :], masks[0, neighbor_ids+ref_ids, :, :, :])
pred_img = torch.tanh(model.decoder(
pred_feat[:len(neighbor_ids), :, :, :])).detach()
pred_img = (pred_img + 1) / 2
pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy()*255
for i in range(len(neighbor_ids)):
idx = neighbor_ids[i]
img = np.array(pred_img[i]).astype(
np.uint8)*binary_masks[idx] + frames[idx] * (1-binary_masks[idx])
if comp_frames[idx] is None:
comp_frames[idx] = img
else:
comp_frames[idx] = comp_frames[idx].astype(
np.float32)*0.5 + img.astype(np.float32)*0.5
writer = cv2.VideoWriter(f"{args.mask}_result.mp4", cv2.VideoWriter_fourcc(*"mp4v"), default_fps, (w, h))
for f in range(video_length):
comp = np.array(comp_frames[f]).astype(
np.uint8)*binary_masks[f] + frames[f] * (1-binary_masks[f])
writer.write(cv2.cvtColor(np.array(comp).astype(np.uint8), cv2.COLOR_BGR2RGB))
writer.release()
print('Finish in {}'.format(f"{args.mask}_result.mp4"))
if __name__ == '__main__':
main_worker()