Skip to content

Latest commit

 

History

History
43 lines (31 loc) · 1.28 KB

README.md

File metadata and controls

43 lines (31 loc) · 1.28 KB

T5

The T5 models are encoder-decoder models pre-trained on a mixture of unsupervised and supervised tasks.1 These models work well on a variety of tasks by prepending task-specific prefixes to the input, e.g.: translate English to German: …, summarize: …., etc.

This example also supports the FLAN-T5 models variants.2

Generate

Generate text with:

python t5.py --model t5-small --prompt "translate English to German: A tasty apple"

This should give the output: Ein leckerer Apfel

To see a list of options run:

python t5.py --help

The <model> can be any of the following:

Model Name Model Size
t5-small 60 million
t5-base 220 million
t5-large 770 million
t5-3b 3 billion
t5-11b 11 billion

The FLAN variants can be specified with google/flan-t5-small, google/flan-t5-base, etc. See the Hugging Face page for a complete list of models.

Footnotes

  1. For more information on T5 see the original paper or the Hugging Face page.

  2. For more information on FLAN-T5 see the original paper.