[email protected]
is not supported due to requires device with capability > (8, 0) but your GPU has capability (6, 1) (too old)
#79
Labels
bug
Something isn't working
Python Version
Pip Freeze
Reproduction Steps
And Get Error Like
NotImplementedError: No operator found for
memory_efficient_attention_forward
with inputs:query : shape=(1, 8192, 32, 128) (torch.bfloat16)
key : shape=(1, 8192, 32, 128) (torch.bfloat16)
value : shape=(1, 8192, 32, 128) (torch.bfloat16)
attn_bias : <class 'xformers.ops.fmha.attn_bias.BlockDiagonalCausalMask'>
p : 0.0
[email protected]
is not supported because:requires device with capability > (8, 0) but your GPU has capability (6, 1) (too old)
bf16 is only supported on A100+ GPUs
tritonflashattF
is not supported because:requires device with capability > (8, 0) but your GPU has capability (6, 1) (too old)
attn_bias type is <class 'xformers.ops.fmha.attn_bias.BlockDiagonalCausalMask'>
bf16 is only supported on A100+ GPUs
operator wasn't built - see
python -m xformers.info
for more infotriton is not available
requires GPU with sm80 minimum compute capacity, e.g., A100/H100/L4
cutlassF
is not supported because:bf16 is only supported on A100+ GPUs
smallkF
is not supported because:max(query.shape[-1] != value.shape[-1]) > 32
dtype=torch.bfloat16 (supported: {torch.float32})
attn_bias type is <class 'xformers.ops.fmha.attn_bias.BlockDiagonalCausalMask'>
bf16 is only supported on A100+ GPUs
unsupported embed per head: 128
[2024-07-10 15:30:11,478] torch.distributed.elastic.multiprocessing.api: [ERROR] failed (exitcode: 1) local_rank: 0 (pid: 206239) of binary: /opt/mistral-finetune-main/my_venv/bin/python3.10
Traceback (most recent call last):
File "/opt/mistral-finetune-main/my_venv/bin/torchrun", line 8, in
sys.exit(main())
have any other option for Cuda - device_capability version 6.1 vision To mistral-finetune ?
Expected Behavior
have any other option for Cuda - device_capability version 6.1 vision To mistral-finetune ?
Additional Context
python -m xformers.info
xFormers 0.0.24
memory_efficient_attention.cutlassF: available
memory_efficient_attention.cutlassB: available
memory_efficient_attention.decoderF: available
[email protected]: available
[email protected]: available
memory_efficient_attention.smallkF: available
memory_efficient_attention.smallkB: available
memory_efficient_attention.tritonflashattF: unavailable
memory_efficient_attention.tritonflashattB: unavailable
memory_efficient_attention.triton_splitKF: unavailable
indexing.scaled_index_addF: unavailable
indexing.scaled_index_addB: unavailable
indexing.index_select: unavailable
sequence_parallel_fused.write_values: unavailable
sequence_parallel_fused.wait_values: unavailable
sequence_parallel_fused.cuda_memset_32b_async: unavailable
sp24.sparse24_sparsify_both_ways: available
sp24.sparse24_apply: available
sp24.sparse24_apply_dense_output: available
sp24._sparse24_gemm: available
[email protected]: available
swiglu.dual_gemm_silu: available
swiglu.gemm_fused_operand_sum: available
swiglu.fused.p.cpp: available
is_triton_available: False
pytorch.version: 2.2.0+cu121
pytorch.cuda: available
gpu.compute_capability: 6.1
gpu.name: NVIDIA GeForce GTX 1080
dcgm_profiler: unavailable
build.info: available
build.cuda_version: 1201
build.python_version: 3.10.13
build.torch_version: 2.2.0+cu121
build.env.TORCH_CUDA_ARCH_LIST: 5.0+PTX 6.0 6.1 7.0 7.5 8.0+PTX 9.0
build.env.XFORMERS_BUILD_TYPE: Release
build.env.XFORMERS_ENABLE_DEBUG_ASSERTIONS: None
build.env.NVCC_FLAGS: None
build.env.XFORMERS_PACKAGE_FROM: wheel-v0.0.24
build.nvcc_version: 12.1.66
source.privacy: open source
Suggested Solutions
No response
The text was updated successfully, but these errors were encountered: