-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathReticular_Neuron.cpp
160 lines (138 loc) · 5.91 KB
/
Reticular_Neuron.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include "Reticular_Neuron.h"
/******************************************************************************/
/* Intrinsic currents */
/******************************************************************************/
/* Leak current */
double Reticular_Neuron::I_L (int N) const{
return g_L * (V[N] - E_L);
}
/* Potassium leak current */
double Reticular_Neuron::I_LK (int N) const{
return g_LK * (V[N] - E_K);
}
/* Fast sodium current */
double Reticular_Neuron::I_Na (int N) const{
double am_Na = 0.1*(V[N]+33)/(1-exp(-(V[N]+33)/10));
double bm_Na = 4*exp(-(V[N]+53.7)/12);
double m_Na = am_Na/(am_Na+bm_Na);
return g_Na * m_Na * m_Na * m_Na * h_Na[N] * (V[N] - E_Na);
}
/* Fast potassium current */
double Reticular_Neuron::I_K (int N) const{
return g_K * n_K[N] * n_K[N] * n_K[N] * n_K[N] * (V[N] - E_K);
}
/* Calcium current */
double Reticular_Neuron::I_Ca(int N) const{
double m_Ca = 1/(1+exp(-(V[N] + 20)/9));
return g_Ca * m_Ca * m_Ca * (V[N] - E_Ca);
}
/******************************************************************************/
/* end */
/******************************************************************************/
/******************************************************************************/
/* Synaptic currents */
/******************************************************************************/
double Reticular_Neuron::I_AMPA(int N) const{
double tot_s_AMPA = 0.0;
for (const auto &syn : PY_Con) {
tot_s_AMPA += syn->s_AMPA[N];
}
for (const auto &syn : TC_Con) {
tot_s_AMPA += syn->s_AMPA[N];
}
return g_AMPA * tot_s_AMPA * (V[N] - E_AMPA);
}
double Reticular_Neuron::I_NMDA(int N) const{
double tot_s_NMDA = 0.0;
for (const auto &syn : PY_Con) {
tot_s_NMDA += syn->s_NMDA[N];
}
for (const auto &syn : TC_Con) {
tot_s_NMDA += syn->s_NMDA[N];
}
return g_NMDA * tot_s_NMDA * (V[N] - E_NMDA);
}
double Reticular_Neuron::I_GABA(int N) const{
double tot_s_GABA = 0.0;
for (const auto &syn : RE_Con) {
tot_s_GABA += syn->s_GABA[N];
}
return g_GABA * tot_s_GABA * (V[N] - E_GABA);
}
/******************************************************************************/
/* end */
/******************************************************************************/
/******************************************************************************/
/* Gating functions */
/******************************************************************************/
/* Sodium activation */
double Reticular_Neuron::alpha_h_Na(int N) const{
return 0.128*exp((17 - (V[N] + 50))/18);
}
/* Sodium activation */
double Reticular_Neuron::beta_h_Na(int N) const{
return 4/(exp((40 - (V[N] + 50))/5) + 1);
}
/* Sodium inactivation */
double Reticular_Neuron::alpha_m_Na(int N) const{
return 0.32*(13 - (V[N] + 50))/(exp((13 - (V[N] + 50))/4) - 1);
}
/* Sodium inactivation */
double Reticular_Neuron::beta_m_Na(int N) const{
return 0.28*((V[N] + 50) - 40)/(exp(((V[N] + 50) - 40)/5) - 1);
}
/* Potassium activation */
double Reticular_Neuron::alpha_n_K(int N) const{
return 0.032*(15 - (V[N] + 50))/(exp((15 - (V[N] + 50))/5) - 1);
}
/* Potassium activation */
double Reticular_Neuron::beta_n_K(int N) const{
return 0.5*exp((10 - (V[N] + 50))/40);
}
/* Activation of T-type Ca current after Destexhe 1996 */
double Reticular_Neuron::m_inf_Ca (int N) const{
double Shift = 2.0;
return 1.0/(1 + exp(-(V[N] + 50 + Shift)/7.4));
}
/* Inactivation of T-type Ca current after Destexhe 1996 */
double Reticular_Neuron::h_inf_Ca (int N) const{
double Shift = 2.0;
return 1.0/(1+exp((V[N]+78+Shift)/5.));
}
/* Activation time constant of T-type Ca current after Destexhe 1996 */
double Reticular_Neuron::tau_m_Ca (int N) const{
return (3.0 + 1.0/(exp((V[N] + 27.)/10.) + exp(-(V[N] + 102.)/15.)))/pow(5.0, 1.2);
}
/* Inactivation time constant of T-type Ca current after Destexhe 1996 */
double Reticular_Neuron::tau_h_Ca (int N) const{
return (85.0 + 1.0/(exp((V[N] + 48.)/4.) + exp(-(V[N] + 407.)/50.)))/pow(3.0, 1.2);
}
/******************************************************************************/
/* end */
/******************************************************************************/
/******************************************************************************/
/* RK iteration of ODEs */
/******************************************************************************/
void Reticular_Neuron::set_RK(int N) {
extern const double dt;
V [N+1]=V [0]+A[N]*dt*(1/C_m *( -(I_L(N) + I_LK(N) + I_Na(N) + I_K(N) + I_Ca(N))
-(I_AMPA(N) + I_NMDA(N) + I_GABA(N))));
h_Na [N+1]=h_Na [0]+A[N]*dt*(alpha_h_Na(N) *(1-h_Na[N]) - beta_h_Na(N) * h_Na[N]);
m_Na [N+1]=m_Na [0]+A[N]*dt*(alpha_m_Na(N) *(1-m_Na[N]) - beta_m_Na(N) * m_Na[N]);
n_K [N+1]=n_K [0]+A[N]*dt*(alpha_n_K (N) *(1-n_K [N]) - beta_n_K (N) * n_K [N]);
h_Ca [N+1]=h_Ca [0]+A[N]*dt*(h_inf_Ca(N) - h_Ca[N])/tau_h_Ca(N);
m_Ca [N+1]=m_Ca [0]+A[N]*dt*(h_inf_Ca(N) - m_Ca[N])/tau_m_Ca(N);
s_GABA[N+1]=s_GABA[0]+A[N]*dt*(1/(1+exp(-(V[N]-20)/2))*(1-s_GABA[N]) - s_GABA[N]/tau_GABA);
}
void Reticular_Neuron::add_RK(void) {
add_RK(V);
add_RK(h_Na);
add_RK(m_Na);
add_RK(n_K);
add_RK(h_Ca);
add_RK(m_Ca);
add_RK(s_GABA);
}
/******************************************************************************/
/* end */
/******************************************************************************/