-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCortex_mex.cpp
137 lines (123 loc) · 5.57 KB
/
Cortex_mex.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*
* Copyright (c) 2014 University of Lübeck
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* AUTHORS: Michael Schellenberger Costa: [email protected]
*
* Based on: Characterization of K-Complexes and Slow Wave Activity in a Neural Mass Model
* A Weigenand, M Schellenberger Costa, H-VV Ngo, JC Claussen, T Martinetz
* PLoS Computational Biology. 2014;10:e1003923
*/
/******************************************************************************/
/* Implementation of the simulation as MATLAB routine (mex compiler) */
/* mex command is given by: */
/* mex CXXFLAGS="\$CXXFLAGS -std=c++11 -O3" Cortex_mex.cpp Cortical_Column.cpp*/
/******************************************************************************/
#include "mex.h"
#include "matrix.h"
#include <iterator>
#include <vector>
#include "Cortical_Column.h"
#include "Data_Storage.h"
#include "Stimulation.h"
mxArray* SetMexArray(int N, int M);
mxArray* get_marker(Stim &stim);
/******************************************************************************/
/* Fixed simulation settings */
/******************************************************************************/
extern const int onset = 10; /* Time until data is stored in s */
extern const int res = 1E4; /* Number of iteration steps per s */
extern const int red = 1E2; /* Number of iterations steps not saved */
extern const double dt = 1E3/res; /* Duration of a time step in ms */
extern const double h = sqrt(dt); /* Square root of dt for SRK iteration */
/******************************************************************************/
/* Simulation routine */
/* lhs defines outputs */
/* rhs defines inputs */
/******************************************************************************/
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
/* Set the seed */
srand(time(NULL));
/* Fetch inputs */
const int T = (int) (mxGetScalar(prhs[0])); /* Duration of simulation in s */
const int Time = (T+onset)*res; /* Total number of iteration steps */
double* Param_Cortex = mxGetPr (prhs[1]); /* Parameters of cortical module */
double* var_stim = mxGetPr (prhs[2]); /* Parameters of stimulation protocol */
/* Initialize the population */
Cortical_Column Cortex(Param_Cortex);
/* Initialize the stimulation protocol */
Stim Stimulation(Cortex, var_stim);
/* Data container in MATLAB format */
std::vector<mxArray*> dataArray;
dataArray.reserve(6);
dataArray.push_back(SetMexArray(1, T*res/red)); // Vp
dataArray.push_back(SetMexArray(1, T*res/red)); // Na
dataArray.push_back(SetMexArray(1, T*res/red)); // s_ep
dataArray.push_back(SetMexArray(1, T*res/red)); // s_ei
dataArray.push_back(SetMexArray(1, T*res/red)); // s_gp
dataArray.push_back(SetMexArray(1, T*res/red)); // s_gi
/* Pointer to the data blocks */
std::vector<double*> dataPointer;
dataPointer.reserve(dataArray.size());
for (auto &dataptr : dataArray) {
dataPointer.push_back(mxGetPr(dataptr));
}
/* Simulation */
int count = 0;
for (unsigned t=0; t < Time; ++t) {
Cortex.iterate_ODE();
Stimulation.check_stim(t);
if(t >= onset*res && t%red == 0){
get_data(count, Cortex, dataPointer);
++count;
}
}
/* Return the data containers */
size_t numOutputs = 0;
for (auto &dataptr : dataArray) {
plhs[numOutputs++] = dataptr;
}
plhs[numOutputs] = get_marker(Stimulation);
return;
}
/******************************************************************************/
/* Create MATLAB data containers */
/******************************************************************************/
mxArray* SetMexArray(int N, int M) {
mxArray* Array = mxCreateDoubleMatrix(0, 0, mxREAL);
mxSetM(Array, N);
mxSetN(Array, M);
mxSetData(Array, mxMalloc(sizeof(double)*M*N));
return Array;
}
mxArray* get_marker(Stim &stim) {
extern const int red;
mxArray* marker = mxCreateDoubleMatrix(0, 0, mxREAL);
mxSetM(marker, 1);
mxSetN(marker, stim.marker_stimulation.size());
mxSetData(marker, mxMalloc(sizeof(double)*stim.marker_stimulation.size()));
double* Pr_Marker = mxGetPr(marker);
unsigned counter = 0;
/* Division by res transforms marker time from dt to sampling rate */
for(auto & elem : stim.marker_stimulation) {
Pr_Marker[counter++] = elem/red;
}
return marker;
}