-
Notifications
You must be signed in to change notification settings - Fork 66
/
README.html
751 lines (715 loc) · 29.6 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.3.353">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="author" content="Michael Love">
<title>Bioconductor cheat sheet</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
</style>
<script src="README_files/libs/clipboard/clipboard.min.js"></script>
<script src="README_files/libs/quarto-html/quarto.js"></script>
<script src="README_files/libs/quarto-html/popper.min.js"></script>
<script src="README_files/libs/quarto-html/tippy.umd.min.js"></script>
<script src="README_files/libs/quarto-html/anchor.min.js"></script>
<link href="README_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="README_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="README_files/libs/bootstrap/bootstrap.min.js"></script>
<link href="README_files/libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="README_files/libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
</head>
<body>
<div id="quarto-content" class="page-columns page-rows-contents page-layout-article">
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<div class="quarto-alternate-formats"><h2>Other Formats</h2><ul><li><a href="README.pdf"><i class="bi bi-file-pdf"></i>PDF</a></li></ul></div></div>
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title">Bioconductor cheat sheet</h1>
</div>
<div class="quarto-title-meta">
<div>
<div class="quarto-title-meta-heading">Author</div>
<div class="quarto-title-meta-contents">
<p>Michael Love </p>
</div>
</div>
</div>
</header>
<section id="install" class="level2">
<h2 class="anchored" data-anchor-id="install">Install</h2>
<p>For details go to http://bioconductor.org/install/</p>
<pre><code>if (!requireNamespace("BiocManager"))
install.packages("BiocManager")
BiocManager::install()
BiocManager::install(c("package1","package2")
BiocManager::valid() # are packages up to date?
# what Bioc version is release right now?
http://bioconductor.org/bioc-version
# what Bioc versions are release/devel?
http://bioconductor.org/js/versions.js</code></pre>
</section>
<section id="help-within-r" class="level2">
<h2 class="anchored" data-anchor-id="help-within-r">help within R</h2>
<p>Simple help:</p>
<pre><code>?functionName
?"eSet-class" # classes need the '-class' on the end
help(package="foo",help_type="html") # launch web browser help
vignette("topic")
browseVignettes(package="package") # show vignettes for the package</code></pre>
<p>Help for advanced users:</p>
<pre><code>functionName # prints source code
getMethod(method,"class") # prints source code for method
selectMethod(method, "class") # will climb the inheritance to find method
showMethods(classes="class") # show all methods for class
methods(class="GRanges") # this will work in R >= 3.2
?"functionName,class-method" # method help for S4 objects, e.g.:
?"plotMA,data.frame-method" # from library(geneplotter)
?"method.class" # method help for S3 objects e.g.:
?"plot.lm"
sessionInfo() # necessary info for getting help
packageVersion("foo") # what version of package </code></pre>
<p>Bioconductor support website: https://support.bioconductor.org</p>
<p>If you use RStudio, then you already get nicely rendered documentation using <code>?</code> or <code>help</code>. If you are a command line person, then you can use this alias to pop up a help page in your web browser with <code>rhelp functionName packageName</code>.</p>
<pre><code>alias rhelp="Rscript -e 'args <- commandArgs(TRUE); help(args[2], package=args[3], help_type=\"html\"); Sys.sleep(5)' --args"</code></pre>
</section>
<section id="debugging-r" class="level2">
<h2 class="anchored" data-anchor-id="debugging-r">debugging R</h2>
<pre><code>traceback() # what steps lead to an error
# debug a function
debug(myFunction) # step line-by-line through the code in a function
undebug(myFunction) # stop debugging
debugonce(myFunction) # same as above, but doesn't need undebug()
# also useful if you are writing code is to put
# the function browser() inside a function at a critical point
# this plus devtools::load_all() can be useful for programming
# to jump in function on error:
options(error=recover)
# turn that behavior off:
options(error=NULL)
# debug, e.g. estimateSizeFactors from DESeq2...
# debugging an S4 method is more difficult; this gives you a peek inside:
trace(estimateSizeFactors, browser, exit=browser, signature="DESeqDataSet")</code></pre>
</section>
<section id="show-package-specific-methods-for-a-class" class="level2">
<h2 class="anchored" data-anchor-id="show-package-specific-methods-for-a-class">Show package-specific methods for a class</h2>
<p>These two long strings of R code do approximately the same thing: obtain the methods that operate on an object of a given class, which are defined in a specific package.</p>
<pre><code>intersect(sapply(strsplit(as.character(methods(class="DESeqDataSet")), ","), `[`, 1), ls("package:DESeq2"))
sub("Function: (.*) \\(package .*\\)","\\1",grep("Function",showMethods(classes="DESeqDataSet", where=getNamespace("DESeq2"), printTo=FALSE), value=TRUE))</code></pre>
</section>
<section id="annotations" class="level2">
<h2 class="anchored" data-anchor-id="annotations">Annotations</h2>
<p>For AnnotationHub examples, see:</p>
<p>https://www.bioconductor.org/help/workflows/annotation/Annotation_Resources</p>
<p>The following is how to work with the organism database packages, and biomart.</p>
<p><a href="http://www.bioconductor.org/packages/release/bioc/html/AnnotationDbi.html">AnnotationDbi</a></p>
<pre><code># using one of the annotation packges
library(AnnotationDbi)
library(org.Hs.eg.db) # or, e.g. Homo.sapiens
columns(org.Hs.eg.db)
keytypes(org.Hs.eg.db)
head(keys(org.Hs.eg.db, keytype="ENTREZID"))
# returns a named character vector, see ?mapIds for multiVals options
res <- mapIds(org.Hs.eg.db, keys=k, column="ENSEMBL", keytype="ENTREZID")
# generates warning for 1:many mappings
res <- select(org.Hs.eg.db, keys=k,
columns=c("ENTREZID","ENSEMBL","SYMBOL"),
keytype="ENTREZID")</code></pre>
<p><a href="http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html">biomaRt</a></p>
<pre><code># map from one annotation to another using biomart
library(biomaRt)
m <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")
map <- getBM(mart = m,
attributes = c("ensembl_gene_id", "entrezgene"),
filters = "ensembl_gene_id",
values = some.ensembl.genes)</code></pre>
</section>
<section id="genomic-ranges" class="level2">
<h2 class="anchored" data-anchor-id="genomic-ranges">Genomic ranges</h2>
<p><a href="http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html">GenomicRanges</a></p>
<pre><code>library(GenomicRanges)
z <- GRanges("chr1",IRanges(1000001,1001000),strand="+")
start(z)
end(z)
width(z)
strand(z)
mcols(z) # the 'metadata columns', any information stored alongside each range
ranges(z) # gives the IRanges
seqnames(z) # the chromosomes for each ranges
seqlevels(z) # the possible chromosomes
seqlengths(z) # the lengths for each chromosome</code></pre>
<section id="intra-range-methods" class="level3">
<h3 class="anchored" data-anchor-id="intra-range-methods">Intra-range methods</h3>
<p>Affects ranges independently</p>
<table class="table">
<thead>
<tr class="header">
<th>function</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>shift</td>
<td>moves left/right</td>
</tr>
<tr class="even">
<td>narrow</td>
<td>narrows by relative position within range</td>
</tr>
<tr class="odd">
<td>resize</td>
<td>resizes to width, fixing start for +, end for -</td>
</tr>
<tr class="even">
<td>flank</td>
<td>returns flanking ranges to the left +, or right -</td>
</tr>
<tr class="odd">
<td>promoters</td>
<td>similar to flank</td>
</tr>
<tr class="even">
<td>restrict</td>
<td>restricts ranges to a start and end position</td>
</tr>
<tr class="odd">
<td>trim</td>
<td>trims out of bound ranges</td>
</tr>
<tr class="even">
<td>+/-</td>
<td>expands/contracts by adding/subtracting fixed amount</td>
</tr>
<tr class="odd">
<td>*</td>
<td>zooms in (positive) or out (negative) by multiples</td>
</tr>
</tbody>
</table>
</section>
<section id="inter-range-methods" class="level3">
<h3 class="anchored" data-anchor-id="inter-range-methods">Inter-range methods</h3>
<p>Affects ranges as a group</p>
<table class="table">
<thead>
<tr class="header">
<th>function</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>range</td>
<td>one range, leftmost start to rightmost end</td>
</tr>
<tr class="even">
<td>reduce</td>
<td>cover all positions with only one range</td>
</tr>
<tr class="odd">
<td>gaps</td>
<td>uncovered positions within range</td>
</tr>
<tr class="even">
<td>disjoin</td>
<td>breaks into discrete ranges based on original starts/ends</td>
</tr>
</tbody>
</table>
</section>
<section id="nearest-methods" class="level3">
<h3 class="anchored" data-anchor-id="nearest-methods">Nearest methods</h3>
<p>Given two sets of ranges, <code>x</code> and <code>subject</code>, for each range in <code>x</code>, returns…</p>
<table class="table">
<colgroup>
<col style="width: 50%">
<col style="width: 50%">
</colgroup>
<thead>
<tr class="header">
<th>function</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>nearest</td>
<td>index of the nearest neighbor range in subject</td>
</tr>
<tr class="even">
<td>precede</td>
<td>index of the range in subject that is directly preceded by the range in x</td>
</tr>
<tr class="odd">
<td>follow</td>
<td>index of the range in subject that is directly followed by the range in x</td>
</tr>
<tr class="even">
<td>distanceToNearest</td>
<td>distances to its nearest neighbor in subject (Hits object)</td>
</tr>
<tr class="odd">
<td>distance</td>
<td>distances to nearest neighbor (integer vector)</td>
</tr>
</tbody>
</table>
<p>A Hits object can be accessed with <code>queryHits</code>, <code>subjectHits</code> and <code>mcols</code> if a distance is associated.</p>
</section>
<section id="set-methods" class="level3">
<h3 class="anchored" data-anchor-id="set-methods">set methods</h3>
<p>If <code>y</code> is a GRangesList, then use <code>punion</code>, etc. All functions have default <code>ignore.strand=FALSE</code>, so are strand specific.</p>
<pre><code>union(x,y)
intersect(x,y)
setdiff(x,y)</code></pre>
</section>
<section id="overlaps" class="level3">
<h3 class="anchored" data-anchor-id="overlaps">Overlaps</h3>
<pre><code>x %over% y # logical vector of which x overlaps any in y
fo <- findOverlaps(x,y) # returns a Hits object
queryHits(fo) # which in x
subjectHits(fo) # which in y </code></pre>
</section>
<section id="seqnames-and-seqlevels" class="level3">
<h3 class="anchored" data-anchor-id="seqnames-and-seqlevels">Seqnames and seqlevels</h3>
<p><a href="http://www.bioconductor.org/packages/release/bioc/html/GenomicRanges.html">GenomicRanges</a> and <a href="http://www.bioconductor.org/packages/release/bioc/html/GenomeInfoDb.html">GenomeInfoDb</a></p>
<pre><code>gr.sub <- gr[seqlevels(gr) == "chr1"]
seqlevelsStyle(x) <- "UCSC" # convert to 'chr1' style from "NCBI" style '1'</code></pre>
</section>
</section>
<section id="sequences" class="level2">
<h2 class="anchored" data-anchor-id="sequences">Sequences</h2>
<p><a href="http://www.bioconductor.org/packages/release/bioc/html/Biostrings.html">Biostrings</a></p>
<p>see the <a href="http://www.bioconductor.org/packages/release/bioc/vignettes/Biostrings/inst/doc/BiostringsQuickOverview.pdf">Biostrings Quick Overview PDF</a></p>
<p>For naming, see <a href="http://genomicsclass.github.io/book/pages/annoCheat.html">cheat sheet for annotation</a></p>
<pre><code>library(BSgenome.Hsapiens.UCSC.hg19)
dnastringset <- getSeq(Hsapiens, granges) # returns a DNAStringSet
# also Views() for Bioconductor >= 3.1</code></pre>
<pre><code>library(Biostrings)
dnastringset <- readDNAStringSet("transcripts.fa")</code></pre>
<pre><code>substr(dnastringset, 1, 10) # to character string
subseq(dnastringset, 1, 10) # returns DNAStringSet
Views(dnastringset, 1, 10) # lightweight views into object
complement(dnastringset)
reverseComplement(dnastringset)
matchPattern("ACGTT", dnastring) # also countPattern, also works on Hsapiens/genome
vmatchPattern("ACGTT", dnastringset) # also vcountPattern
letterFrequecy(dnastringset, "CG") # how many C's or G's
# also letterFrequencyInSlidingView
alphabetFrequency(dnastringset, as.prob=TRUE)
# also oligonucleotideFrequency, dinucleotideFrequency, trinucleotideFrequency
# transcribe/translate for imitating biological processes</code></pre>
</section>
<section id="sequencing-data" class="level2">
<h2 class="anchored" data-anchor-id="sequencing-data">Sequencing data</h2>
<p><a href="http://www.bioconductor.org/packages/release/bioc/html/Rsamtools.html">Rsamtools</a> <code>scanBam</code> returns lists of raw values from BAM files</p>
<pre><code>library(Rsamtools)
which <- GRanges("chr1",IRanges(1000001,1001000))
what <- c("rname","strand","pos","qwidth","seq")
param <- ScanBamParam(which=which, what=what)
# for more BamFile functions/details see ?BamFile
# yieldSize for chunk-wise access
bamfile <- BamFile("/path/to/file.bam")
reads <- scanBam(bamfile, param=param)
res <- countBam(bamfile, param=param)
# for more sophisticated counting modes
# see summarizeOverlaps() below
# quickly check chromosome names
seqinfo(BamFile("/path/to/file.bam"))
# DNAStringSet is defined in the Biostrings package
# see the Biostrings Quick Overview PDF
dnastringset <- scanFa(fastaFile, param=granges)</code></pre>
<p><a href="http://www.bioconductor.org/packages/release/bioc/html/GenomicAlignments.html">GenomicAlignments</a> returns Bioconductor objects (GRanges-based)</p>
<pre><code>library(GenomicAlignments)
ga <- readGAlignments(bamfile) # single-end
ga <- readGAlignmentPairs(bamfile) # paired-end</code></pre>
</section>
<section id="transcript-databases" class="level2">
<h2 class="anchored" data-anchor-id="transcript-databases">Transcript databases</h2>
<p><a href="http://www.bioconductor.org/packages/release/bioc/html/GenomicFeatures.html">GenomicFeatures</a></p>
<pre><code># get a transcript database, which stores exon, trancript, and gene information
library(GenomicFeatures)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
# or build a txdb from GTF file (e.g. downloadable from Ensembl FTP site)
txdb <- makeTranscriptDbFromGFF("file.GTF", format="gtf")
# or build a txdb from Biomart (however, not as easy to reproduce later)
txdb <- makeTranscriptDbFromBiomart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")
# in Bioconductor >= 3.1, also makeTxDbFromGRanges
# saving and loading
saveDb(txdb, file="txdb.sqlite")
loadDb("txdb.sqlite")
# extracting information from txdb
g <- genes(txdb) # GRanges, just start to end, no exon/intron information
tx <- transcripts(txdb) # GRanges, similar to genes()
e <- exons(txdb) # GRanges for each exon
ebg <- exonsBy(txdb, by="gene") # exons grouped in a GRangesList by gene
ebt <- exonsBy(txdb, by="tx") # similar but by transcript
# then get the transcript sequence
txSeq <- extractTranscriptSeqs(Hsapiens, ebt)</code></pre>
</section>
<section id="summarizing-information-across-ranges-and-experiments" class="level2">
<h2 class="anchored" data-anchor-id="summarizing-information-across-ranges-and-experiments">Summarizing information across ranges and experiments</h2>
<p>The SummarizedExperiment is a storage class for high-dimensional information tied to the same GRanges or GRangesList across experiments (e.g., read counts in exons for each gene).</p>
<pre><code>library(GenomicAlignments)
fls <- list.files(pattern="*.bam$")
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
ebg <- exonsBy(txdb, by="gene")
# see yieldSize argument for restricting memory
bf <- BamFileList(fls)
library(BiocParallel)
register(MulticoreParam(4))
# lots of options in the man page
# singleEnd, ignore.strand, inter.features, fragments, etc.
se <- summarizeOverlaps(ebg, bf)
# operations on SummarizedExperiment
assay(se) # the counts from summarizeOverlaps
colData(se)
rowRanges(se)</code></pre>
<p>My preferred quantification method is <a href="https://combine-lab.github.io/salmon/">Salmon</a>, with <code>--gcBias</code> option enabled unless you know there is no GC dependence in the data, followed by <a href="http://bioconductor.org/pacakges/tximport">tximport</a>. Here is an example of usage:</p>
<pre><code>coldata <- read.table("samples.txt")
rownames(coldata) <- coldata$id
files <- coldata$files; names(files) <- coldata$id
txi <- tximport(files, type="salmon", tx2gene=tx2gene)
dds <- DESeqDataSetFromTximport(txi, coldata, ~condition)</code></pre>
<p>Another fast Bioconductor read counting method is featureCounts in <a href="http://www.bioconductor.org/packages/release/bioc/html/Rsubread.html">Rsubread</a>.</p>
<pre><code>library(Rsubread)
res <- featureCounts(files, annot.ext="annotation.gtf",
isGTFAnnotationFile=TRUE,
GTF.featureType="exon",
GTF.attrType="gene_id")
res$counts</code></pre>
</section>
<section id="rna-seq-gene-wise-analysis" class="level2">
<h2 class="anchored" data-anchor-id="rna-seq-gene-wise-analysis">RNA-seq gene-wise analysis</h2>
<p><a href="http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html">DESeq2</a></p>
<p>My preferred pipeline for DESeq2 users is to start with a lightweight transcript abundance quantifier such as <a href="https://combine-lab.github.io/salmon/">Salmon</a> and to use <a href="http://bioconductor.org/packages/tximport">tximport</a>, followed by <code>DESeqDataSetFromTximport</code>.</p>
<p>Here, <code>coldata</code> is a <em>data.frame</em> with <code>group</code> as a column.</p>
<pre><code>library(DESeq2)
# from tximport
dds <- DESeqDataSetFromTximport(txi, coldata, ~ group)
# from SummarizedExperiment
dds <- DESeqDataSet(se, ~ group)
# from count matrix
dds <- DESeqDataSetFromMatrix(counts, coldata, ~ group)
# minimal filtering helps keep things fast
# one can set 'n' to e.g. min(5, smallest group sample size)
keep <- rowSums(counts(dds) >= 10) >= n
dds <- dds[keep,]
dds <- DESeq(dds)
res <- results(dds) # no shrinkage of LFC, or:
res <- lfcShrink(dds, coef = 2, type="apeglm") # shrink LFCs</code></pre>
<p><a href="http://www.bioconductor.org/packages/release/bioc/html/edgeR.html">edgeR</a></p>
<pre><code># this chunk from the Quick start in the edgeR User Guide
library(edgeR)
y <- DGEList(counts=counts,group=group)
keep <- filterByExpr(y)
y <- y[keep,]
y <- calcNormFactors(y)
design <- model.matrix(~group)
y <- estimateDisp(y,design)
fit <- glmFit(y,design)
lrt <- glmLRT(fit)
topTags(lrt)
# or use the QL methods:
qlfit <- glmQLFit(y,design)
qlft <- glmQLFTest(qlfit)
topTags(qlft)</code></pre>
<p><a href="http://www.bioconductor.org/packages/release/bioc/html/limma.html">limma-voom</a></p>
<pre><code>library(limma)
design <- model.matrix(~ group)
y <- DGEList(counts)
keep <- filterByExpr(y)
y <- y[keep,]
y <- calcNormFactors(y)
v <- voom(y,design)
fit <- lmFit(v,design)
fit <- eBayes(fit)
topTable(fit)</code></pre>
<p><a href="http://www.bioconductor.org/packages/release/BiocViews.html#___RNASeq">Many more RNA-seq packages</a></p>
</section>
<section id="expression-set" class="level2">
<h2 class="anchored" data-anchor-id="expression-set">Expression set</h2>
<pre><code>library(Biobase)
data(sample.ExpressionSet)
e <- sample.ExpressionSet
exprs(e)
pData(e)
fData(e)</code></pre>
</section>
<section id="get-geo-dataset" class="level2">
<h2 class="anchored" data-anchor-id="get-geo-dataset">Get GEO dataset</h2>
<pre><code>library(GEOquery)
e <- getGEO("GSE9514")</code></pre>
</section>
<section id="microarray-analysis" class="level2">
<h2 class="anchored" data-anchor-id="microarray-analysis">Microarray analysis</h2>
<pre><code>library(affy)
library(limma)
phenoData <- read.AnnotatedDataFrame("sample-description.csv")
eset <- justRMA("/celfile-directory", phenoData=phenoData)
design <- model.matrix(~ Disease, pData(eset))
fit <- lmFit(eset, design)
efit <- eBayes(fit)
topTable(efit, coef=2)</code></pre>
</section>
<section id="icobra-performance-metrics" class="level2">
<h2 class="anchored" data-anchor-id="icobra-performance-metrics">iCOBRA performance metrics</h2>
<pre><code>library(iCOBRA)
cd <- COBRAData(pval=pval.df, padj=padj.df, score=score.df, truth=truth.df)
cp <- calculate_performance(cd, binary_truth = "status", cont_truth = "logFC")
cobraplot <- prepare_data_for_plot(cp)
plot_fdrtprcurve(cobraplot)
# interactive shiny app:
COBRAapp(cd)</code></pre>
</section>
</main>
<!-- /main column -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const clipboard = new window.ClipboardJS('.code-copy-button', {
text: function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn) {
const config = {
allowHTML: true,
content: contentFn,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start'
};
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
return note.innerHTML;
});
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
annoteDlNode.addEventListener('click', (event) => {
const clickedEl = event.target;
if (clickedEl !== selectedAnnoteEl) {
unselectCodeLines();
const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
if (activeEl) {
activeEl.classList.remove('code-annotation-active');
}
selectCodeLines(clickedEl);
clickedEl.classList.add('code-annotation-active');
} else {
// Unselect the line
unselectCodeLines();
clickedEl.classList.remove('code-annotation-active');
}
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</div> <!-- /content -->
</body></html>