We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
environment: python:3.7.5 (default, Oct 25 2019, 15:51:11) [GCC 7.3.0] pytorch:0.4.1.post2
my code: import tensorwatch as tw import time import torchvision net = torchvision.models.alexnet() tw.draw_model(alexnet_model,[1,3,224,224])
the error: TypeError Traceback (most recent call last) in 4 import torchvision 5 net = torchvision.models.alexnet() ----> 6 tw.draw_model(alexnet_model,[1,3,224,224])
~/anaconda3/envs/CenterNet/lib/python3.7/site-packages/tensorwatch/init.py in draw_model(model, input_shape, orientation, png_filename) 33 def draw_model(model, input_shape=None, orientation='TB', png_filename=None): #orientation = 'LR' for landscpe 34 from .model_graph.hiddenlayer import pytorch_draw_model ---> 35 g = pytorch_draw_model.draw_graph(model, input_shape) 36 return g 37
~/anaconda3/envs/CenterNet/lib/python3.7/site-packages/tensorwatch/model_graph/hiddenlayer/pytorch_draw_model.py in draw_graph(model, args) 33 args = torch.ones(args) 34 ---> 35 dot = draw_img_classifier(model, args) 36 return DotWrapper(dot) 37
~/anaconda3/envs/CenterNet/lib/python3.7/site-packages/tensorwatch/model_graph/hiddenlayer/pytorch_draw_model.py in draw_img_classifier(model, dataset, display_param_nodes, rankdir, styles, input_shape) 61 try: 62 non_para_model = distiller.make_non_parallel_copy(model) ---> 63 g = SummaryGraph(non_para_model, dummy_input) 64 65 return sgraph2dot(g, display_param_nodes, rankdir, styles)
~/anaconda3/envs/CenterNet/lib/python3.7/site-packages/tensorwatch/model_graph/hiddenlayer/summary_graph.py in init(self, model, dummy_input, apply_scope_name_workarounds) 88 dummy_input = distiller.convert_tensors_recursively_to(dummy_input, device=device) 89 self.dummy_input = dummy_input ---> 90 trace, _ = jit.get_trace_graph(model_clone, dummy_input, _force_outplace=True) 91 92 # As of PyTorch 1.1.0, ONNX trace optimization has two issues that result in incorrect scope names
TypeError: get_trace_graph() got an unexpected keyword argument '_force_outplace'
Can you help me? thanks !
The text was updated successfully, but these errors were encountered:
when i change torch==1.1.0 to torch==0.4.1,my problem is changed from #55 to #54, who can help me? Thanks
Sorry, something went wrong.
No branches or pull requests
environment:
python:3.7.5 (default, Oct 25 2019, 15:51:11)
[GCC 7.3.0]
pytorch:0.4.1.post2
my code:
import tensorwatch as tw
import time
import torchvision
net = torchvision.models.alexnet()
tw.draw_model(alexnet_model,[1,3,224,224])
the error:
TypeError Traceback (most recent call last)
in
4 import torchvision
5 net = torchvision.models.alexnet()
----> 6 tw.draw_model(alexnet_model,[1,3,224,224])
~/anaconda3/envs/CenterNet/lib/python3.7/site-packages/tensorwatch/init.py in draw_model(model, input_shape, orientation, png_filename)
33 def draw_model(model, input_shape=None, orientation='TB', png_filename=None): #orientation = 'LR' for landscpe
34 from .model_graph.hiddenlayer import pytorch_draw_model
---> 35 g = pytorch_draw_model.draw_graph(model, input_shape)
36 return g
37
~/anaconda3/envs/CenterNet/lib/python3.7/site-packages/tensorwatch/model_graph/hiddenlayer/pytorch_draw_model.py in draw_graph(model, args)
33 args = torch.ones(args)
34
---> 35 dot = draw_img_classifier(model, args)
36 return DotWrapper(dot)
37
~/anaconda3/envs/CenterNet/lib/python3.7/site-packages/tensorwatch/model_graph/hiddenlayer/pytorch_draw_model.py in draw_img_classifier(model, dataset, display_param_nodes, rankdir, styles, input_shape)
61 try:
62 non_para_model = distiller.make_non_parallel_copy(model)
---> 63 g = SummaryGraph(non_para_model, dummy_input)
64
65 return sgraph2dot(g, display_param_nodes, rankdir, styles)
~/anaconda3/envs/CenterNet/lib/python3.7/site-packages/tensorwatch/model_graph/hiddenlayer/summary_graph.py in init(self, model, dummy_input, apply_scope_name_workarounds)
88 dummy_input = distiller.convert_tensors_recursively_to(dummy_input, device=device)
89 self.dummy_input = dummy_input
---> 90 trace, _ = jit.get_trace_graph(model_clone, dummy_input, _force_outplace=True)
91
92 # As of PyTorch 1.1.0, ONNX trace optimization has two issues that result in incorrect scope names
TypeError: get_trace_graph() got an unexpected keyword argument '_force_outplace'
Can you help me?
thanks !
The text was updated successfully, but these errors were encountered: