You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
My problem is that when I write CANN Sample calls by referencing the C++ API and other hardware C++ interfaces, I can't call the CANN backend to reason about the run, only the CPU is used. Is there something wrong with the way my call code is written?
Target platform
ARM CANN
Build script
#include <iostream>
#include <vector>
#include "onnxruntime_cxx_api.h"
// path of model, Change to user's own model path
const char* model_path = "./onnx/resnet50_Opset16.onnx";
/**
* @brief Input data preparation provided by user.
*
* @param num_input_nodes The number of model input nodes.
* @return A collection of input data.
*/
std::vector<std::vector<float>> input_prepare(size_t num_input_nodes) {
std::vector<std::vector<float>> input_datas;
input_datas.reserve(num_input_nodes);
constexpr size_t input_data_size = 3 * 224 * 224;
std::vector<float> input_data(input_data_size);
// initialize input data with values in [0.0, 1.0]
for (unsigned int i = 0; i < input_data_size; i++)
input_data[i] = (float)i / (input_data_size + 1);
input_datas.push_back(input_data);
return input_datas;
}
/**
* @brief Model output data processing logic(For User updates).
*
* @param output_tensors The results of the model output.
*/
void output_postprocess(std::vector<Ort::Value>& output_tensors) {
auto floatarr = output_tensors.front().GetTensorMutableData<float>();
for (int i = 0; i < 5; i++) {
std::cout << "Score for class [" << i << "] = " << floatarr[i] << '\n';
}
std::cout << "Done!" << std::endl;
}
/**
* @brief The main functions for model inference.
*
* The complete model inference process, which generally does not need to be
* changed here
*/
void inference() {
const auto& api = Ort::GetApi();
// Enable cann graph in cann provider option.
OrtCANNProviderOptions* cann_options = nullptr;
api.CreateCANNProviderOptions(&cann_options);
// Configurations of EP
std::vector<const char*> keys{
"device_id",
"npu_mem_limit",
"arena_extend_strategy",
"enable_cann_graph"};
std::vector<const char*> values{"0", "4294967296", "kNextPowerOfTwo", "1"};
api.UpdateCANNProviderOptions(
cann_options, keys.data(), values.data(), keys.size());
// Convert to general session options
Ort::SessionOptions session_options;
api.SessionOptionsAppendExecutionProvider_CANN(
static_cast<OrtSessionOptions*>(session_options), cann_options);
Ort::Session session(Ort::Env(), model_path, session_options);
Ort::AllocatorWithDefaultOptions allocator;
// Input Process
const size_t num_input_nodes = session.GetInputCount();
std::vector<const char*> input_node_names;
std::vector<Ort::AllocatedStringPtr> input_names_ptr;
input_node_names.reserve(num_input_nodes);
input_names_ptr.reserve(num_input_nodes);
std::vector<std::vector<int64_t>> input_node_shapes;
std::cout << num_input_nodes << std::endl;
for (size_t i = 0; i < num_input_nodes; i++) {
auto input_name = session.GetInputNameAllocated(i, allocator);
input_node_names.push_back(input_name.get());
input_names_ptr.push_back(std::move(input_name));
auto type_info = session.GetInputTypeInfo(i);
auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
input_node_shapes.push_back(tensor_info.GetShape());
}
// Output Process
const size_t num_output_nodes = session.GetOutputCount();
std::vector<const char*> output_node_names;
std::vector<Ort::AllocatedStringPtr> output_names_ptr;
output_names_ptr.reserve(num_input_nodes);
output_node_names.reserve(num_output_nodes);
for (size_t i = 0; i < num_output_nodes; i++) {
auto output_name = session.GetOutputNameAllocated(i, allocator);
output_node_names.push_back(output_name.get());
output_names_ptr.push_back(std::move(output_name));
}
// User need to generate input date according to real situation.
std::vector<std::vector<float>> input_datas = input_prepare(num_input_nodes);
auto memory_info = Ort::MemoryInfo::CreateCpu(
OrtAllocatorType::OrtArenaAllocator, OrtMemTypeDefault);
std::vector<Ort::Value> input_tensors;
input_tensors.reserve(num_input_nodes);
for (size_t i = 0; i < input_node_shapes.size(); i++) {
auto input_tensor = Ort::Value::CreateTensor<float>(
memory_info,
input_datas[i].data(),
input_datas[i].size(),
input_node_shapes[i].data(),
input_node_shapes[i].size());
input_tensors.push_back(std::move(input_tensor));
}
auto output_tensors = session.Run(
Ort::RunOptions{nullptr},
input_node_names.data(),
input_tensors.data(),
num_input_nodes,
output_node_names.data(),
output_node_names.size());
// Processing of out_tensor
output_postprocess(output_tensors);
}
int main(int argc, char* argv[]) {
inference();
return 0;
}
Error / output
The model was not converted to a CANN om file and exported
Visual Studio Version
No response
GCC / Compiler Version
No response
The text was updated successfully, but these errors were encountered:
Describe the issue
My problem is that when I write CANN Sample calls by referencing the C++ API and other hardware C++ interfaces, I can't call the CANN backend to reason about the run, only the CPU is used. Is there something wrong with the way my call code is written?
Target platform
ARM CANN
Build script
Error / output
The model was not converted to a CANN om file and exported
Visual Studio Version
No response
GCC / Compiler Version
No response
The text was updated successfully, but these errors were encountered: