forked from shanren7/real_time_face_recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn4.py
45 lines (38 loc) · 2.86 KB
/
nn4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import tensorflow as tf
import facenet
def inference(images, pool_type, use_lrn, keep_probability, phase_train=True):
""" Define an inference network for face recognition based
on inception modules using batch normalization
Args:
images: The images to run inference on, dimensions batch_size x height x width x channels
phase_train: True if batch normalization should operate in training mode
"""
conv1 = facenet.conv(images, 3, 64, 7, 7, 2, 2, 'SAME', 'conv1_7x7', phase_train=phase_train, use_batch_norm=True)
pool1 = facenet.mpool(conv1, 3, 3, 2, 2, 'SAME')
if use_lrn:
lrn1 = tf.nn.local_response_normalization(pool1, depth_radius=5, bias=1.0, alpha=1e-4, beta=0.75)
else:
lrn1 = pool1
conv2 = facenet.conv(lrn1, 64, 64, 1, 1, 1, 1, 'SAME', 'conv2_1x1', phase_train=phase_train, use_batch_norm=True)
conv3 = facenet.conv(conv2, 64, 192, 3, 3, 1, 1, 'SAME', 'conv3_3x3', phase_train=phase_train, use_batch_norm=True)
if use_lrn:
lrn2 = tf.nn.local_response_normalization(conv3, depth_radius=5, bias=1.0, alpha=1e-4, beta=0.75)
else:
lrn2 = conv3
pool3 = facenet.mpool(lrn2, 3, 3, 2, 2, 'SAME')
incept3a = facenet.inception(pool3, 192, 1, 64, 96, 128, 16, 32, 3, 32, 1, 'MAX', 'incept3a', phase_train=phase_train, use_batch_norm=True)
incept3b = facenet.inception(incept3a, 256, 1, 64, 96, 128, 32, 64, 3, 64, 1, pool_type, 'incept3b', phase_train=phase_train, use_batch_norm=True)
incept3c = facenet.inception(incept3b, 320, 2, 0, 128, 256, 32, 64, 3, 0, 2, 'MAX', 'incept3c', phase_train=phase_train, use_batch_norm=True)
incept4a = facenet.inception(incept3c, 640, 1, 256, 96, 192, 32, 64, 3, 128, 1, pool_type, 'incept4a', phase_train=phase_train, use_batch_norm=True)
incept4b = facenet.inception(incept4a, 640, 1, 224, 112, 224, 32, 64, 3, 128, 1, pool_type, 'incept4b', phase_train=phase_train, use_batch_norm=True)
incept4c = facenet.inception(incept4b, 640, 1, 192, 128, 256, 32, 64, 3, 128, 1, pool_type, 'incept4c', phase_train=phase_train, use_batch_norm=True)
incept4d = facenet.inception(incept4c, 640, 1, 160, 144, 288, 32, 64, 3, 128, 1, pool_type, 'incept4d', phase_train=phase_train, use_batch_norm=True)
incept4e = facenet.inception(incept4d, 640, 2, 0, 160, 256, 64, 128, 3, 0, 2, 'MAX', 'incept4e', phase_train=phase_train, use_batch_norm=True)
incept5a = facenet.inception(incept4e, 1024, 1, 384, 192, 384, 0, 0, 3, 128, 1, pool_type, 'incept5a', phase_train=phase_train, use_batch_norm=True)
incept5b = facenet.inception(incept5a, 896, 1, 384, 192, 384, 0, 0, 3, 128, 1, 'MAX', 'incept5b', phase_train=phase_train, use_batch_norm=True)
pool6 = facenet.apool(incept5b, 3, 3, 1, 1, 'VALID')
resh1 = tf.reshape(pool6, [-1, 896])
affn1 = facenet.affine(resh1, 896, 128)
dropout = tf.nn.dropout(affn1, keep_probability)
norm = tf.nn.l2_normalize(dropout, 1, 1e-10, name='embeddings')
return norm