forked from shanren7/real_time_face_recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacenet.py
593 lines (498 loc) · 20.8 KB
/
facenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# The whole file was taken from @davidsandberg implementation
# https://github.com/davidsandberg/facenet/blob/master/facenet/src/facenet.py
"""Functions for building the face recognition network.
"""
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from os import path
from six.moves import xrange
import tensorflow as tf
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
import numpy as np
from scipy import misc
import matplotlib.pyplot as plt
from sklearn.cross_validation import KFold
parameters = []
conv_counter = 1
pool_counter = 1
affine_counter = 1
def conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, prefix, phase_train=True, use_batch_norm=True):
global conv_counter
global parameters
name = prefix + '_' + str(conv_counter)
conv_counter += 1
with tf.name_scope(name) as scope:
kernel = tf.Variable(tf.truncated_normal([kH, kW, nIn, nOut],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(inpOp, kernel, [1, dH, dW, 1], padding=padType)
if use_batch_norm:
conv_bn = batch_norm(conv, nOut, phase_train, 'batch_norm')
else:
conv_bn = conv
biases = tf.Variable(tf.constant(0.0, shape=[nOut], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv_bn, biases)
conv1 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
return conv1
def affine(inpOp, nIn, nOut):
global affine_counter
global parameters
name = 'affine' + str(affine_counter)
affine_counter += 1
with tf.name_scope(name):
kernel = tf.Variable(tf.truncated_normal([nIn, nOut],
dtype=tf.float32,
stddev=1e-1), name='weights')
biases = tf.Variable(tf.constant(0.0, shape=[nOut], dtype=tf.float32),
trainable=True, name='biases')
affine1 = tf.nn.relu_layer(inpOp, kernel, biases, name=name)
parameters += [kernel, biases]
return affine1
def lppool(inpOp, pnorm, kH, kW, dH, dW, padding):
global pool_counter
global parameters
name = 'pool' + str(pool_counter)
pool_counter += 1
with tf.name_scope('lppool'):
if pnorm == 2:
pwr = tf.square(inpOp)
else:
pwr = tf.pow(inpOp, pnorm)
subsamp = tf.nn.avg_pool(pwr,
ksize=[1, kH, kW, 1],
strides=[1, dH, dW, 1],
padding=padding,
name=name)
subsamp_sum = tf.mul(subsamp, kH*kW)
if pnorm == 2:
out = tf.sqrt(subsamp_sum)
else:
out = tf.pow(subsamp_sum, 1/pnorm)
return out
def mpool(inpOp, kH, kW, dH, dW, padding):
global pool_counter
global parameters
name = 'pool' + str(pool_counter)
pool_counter += 1
with tf.name_scope('maxpool'):
maxpool = tf.nn.max_pool(inpOp,
ksize=[1, kH, kW, 1],
strides=[1, dH, dW, 1],
padding=padding,
name=name)
return maxpool
def apool(inpOp, kH, kW, dH, dW, padding):
global pool_counter
global parameters
name = 'pool' + str(pool_counter)
pool_counter += 1
return tf.nn.avg_pool(inpOp,
ksize=[1, kH, kW, 1],
strides=[1, dH, dW, 1],
padding=padding,
name=name)
def batch_norm(x, n_out, phase_train, name, affine=True):
"""
Batch normalization on convolutional maps.
Args:
x: Tensor, 4D BHWD input maps
n_out: integer, depth of input maps
phase_train: boolean tf.Variable, true indicates training phase
scope: string, variable scope
affine: whether to affine-transform outputs
Return:
normed: batch-normalized maps
Ref: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow/33950177
"""
global parameters
with tf.name_scope(name):
beta = tf.Variable(tf.constant(0.0, shape=[n_out]),
name=name+'/beta', trainable=True)
gamma = tf.Variable(tf.constant(1.0, shape=[n_out]),
name=name+'/gamma', trainable=affine)
batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = control_flow_ops.cond(phase_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_norm_with_global_normalization(x, mean, var,
beta, gamma, 1e-3, affine, name=name)
parameters += [beta, gamma]
return normed
def inception(inp, inSize, ks, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2, o4s3, poolType, name, phase_train=True, use_batch_norm=True):
print('name = ', name)
print('inputSize = ', inSize)
print('kernelSize = {3,5}')
print('kernelStride = {%d,%d}' % (ks,ks))
print('outputSize = {%d,%d}' % (o2s2,o3s2))
print('reduceSize = {%d,%d,%d,%d}' % (o2s1,o3s1,o4s2,o1s))
print('pooling = {%s, %d, %d, %d, %d}' % (poolType, o4s1, o4s1, o4s3, o4s3))
if (o4s2>0):
o4 = o4s2
else:
o4 = inSize
print('outputSize = ', o1s+o2s2+o3s2+o4)
print()
net = []
with tf.name_scope(name):
if o1s>0:
conv1 = conv(inp, inSize, o1s, 1, 1, 1, 1, 'SAME', 'in1_conv1x1', phase_train=phase_train, use_batch_norm=use_batch_norm)
net.append(conv1)
if o2s1>0:
conv3a = conv(inp, inSize, o2s1, 1, 1, 1, 1, 'SAME', 'in2_conv1x1', phase_train=phase_train, use_batch_norm=use_batch_norm)
conv3 = conv(conv3a, o2s1, o2s2, 3, 3, ks, ks, 'SAME', 'in2_conv3x3', phase_train=phase_train, use_batch_norm=use_batch_norm)
net.append(conv3)
if o3s1>0:
conv5a = conv(inp, inSize, o3s1, 1, 1, 1, 1, 'SAME', 'in3_conv1x1', phase_train=phase_train, use_batch_norm=use_batch_norm)
conv5 = conv(conv5a, o3s1, o3s2, 5, 5, ks, ks, 'SAME', 'in3_conv5x5', phase_train=phase_train, use_batch_norm=use_batch_norm)
net.append(conv5)
if poolType=='MAX':
pool = mpool(inp, o4s1, o4s1, o4s3, o4s3, 'SAME')
elif poolType=='L2':
pool = lppool(inp, 2, o4s1, o4s1, o4s3, o4s3, 'SAME')
else:
raise ValueError('Invalid pooling type "%s"' % poolType)
if o4s2>0:
pool_conv = conv(pool, inSize, o4s2, 1, 1, 1, 1, 'SAME', 'in4_conv1x1', phase_train=phase_train, use_batch_norm=use_batch_norm)
else:
pool_conv = pool
net.append(pool_conv)
incept = array_ops.concat(3, net, name=name)
return incept
def triplet_loss(anchor, positive, negative, alpha):
"""Calculate the triplet loss according to the FaceNet paper
Args:
anchor: the embeddings for the anchor images.
positive: the embeddings for the positive images.
positive: the embeddings for the negative images.
Returns:
the triplet loss according to the FaceNet paper as a float tensor.
"""
with tf.name_scope('triplet_loss'):
pos_dist = tf.reduce_sum(tf.square(tf.sub(anchor, positive)), 1) # Summing over distances in each batch
neg_dist = tf.reduce_sum(tf.square(tf.sub(anchor, negative)), 1)
basic_loss = tf.add(tf.sub(pos_dist,neg_dist), alpha)
loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0, name='tripletloss')
return loss
def _add_loss_summaries(total_loss):
"""Add summaries for losses in CIFAR-10 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summmary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.scalar_summary(l.op.name +' (raw)', l)
tf.scalar_summary(l.op.name, loss_averages.average(l))
return loss_averages_op
def train(total_loss, global_step, optimizer, learning_rate, moving_average_decay):
"""Setup training for the FaceNet model.
Create an optimizer and apply to all trainable variables. Add moving
average for all trainable variables.
Args:
total_loss: Total loss from loss().
global_step: Integer Variable counting the number of training steps
processed.
Returns:
train_op: op for training.
"""
# Generate moving averages of all losses and associated summaries.
loss_averages_op = _add_loss_summaries(total_loss)
# Compute gradients.
with tf.control_dependencies([loss_averages_op]):
if optimizer=='ADAGRAD':
opt = tf.train.AdagradOptimizer(learning_rate)
elif optimizer=='ADADELTA':
opt = tf.train.AdadeltaOptimizer(learning_rate, rho=0.9, epsilon=1e-6)
elif optimizer=='ADAM':
opt = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8)
else:
raise ValueError('Invalid optimization algorithm')
grads = opt.compute_gradients(total_loss)
# Apply gradients.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
# Add histograms for trainable variables.
for var in tf.trainable_variables():
tf.histogram_summary(var.op.name, var)
# Add histograms for gradients.
for grad, var in grads:
if grad is not None:
tf.histogram_summary(var.op.name + '/gradients', grad)
# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
moving_average_decay, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
train_op = tf.no_op(name='train')
return train_op, grads
def prewhiten(x):
mean = np.mean(x)
std = np.std(x)
std_adj = np.max(std, 1.0/np.sqrt(x.size))
y = np.multiply(np.subtract(x, mean), 1/std_adj)
return y
def crop(image, random_crop, image_size):
if image.shape[1]>image_size:
sz1 = image.shape[1]/2
sz2 = image_size/2
if random_crop:
diff = sz1-sz2
(h, v) = (np.random.randint(-diff, diff+1), np.random.randint(-diff, diff+1))
else:
(h, v) = (0,0)
image = image[(sz1-sz2+v):(sz1+sz2+v),(sz1-sz2+h):(sz1+sz2+h),:]
return image
def flip(image, random_flip):
if random_flip and np.random.choice([True, False]):
image = np.fliplr(image)
return image
def to_rgb(img):
w, h = img.shape
ret = np.empty((w, h, 3), dtype=np.uint8)
ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img
return ret
def load_data(image_paths, do_random_crop, do_random_flip, image_size, do_prewhiten=True):
nrof_samples = len(image_paths)
img_list = [None] * nrof_samples
for i in xrange(nrof_samples):
img = misc.imread(image_paths[i])
if img.ndim == 2:
img = to_rgb(img)
if do_prewhiten:
img = prewhiten(img)
img = crop(img, do_random_crop, image_size)
img = flip(img, do_random_flip)
img_list[i] = img
images = np.stack(img_list)
return images
def get_batch(image_data, batch_size, batch_index):
nrof_examples = np.size(image_data, 0)
j = batch_index*batch_size % nrof_examples
if j+batch_size<=nrof_examples:
batch = image_data[j:j+batch_size,:,:,:]
else:
x1 = image_data[j:nrof_examples,:,:,:]
x2 = image_data[0:nrof_examples-j,:,:,:]
batch = np.vstack([x1,x2])
batch_float = batch.astype(np.float32)
return batch_float
def get_triplet_batch(triplets, batch_index, batch_size):
ax, px, nx = triplets
a = get_batch(ax, int(batch_size/3), batch_index)
p = get_batch(px, int(batch_size/3), batch_index)
n = get_batch(nx, int(batch_size/3), batch_index)
batch = np.vstack([a, p, n])
return batch
def select_training_triplets(embeddings, num_per_class, image_data, people_per_batch, alpha):
def dist(emb1, emb2):
x = np.square(np.subtract(emb1, emb2))
return np.sum(x, 0)
nrof_images = image_data.shape[0]
nrof_triplets = nrof_images - people_per_batch
shp = [nrof_triplets, image_data.shape[1], image_data.shape[2], image_data.shape[3]]
as_arr = np.zeros(shp)
ps_arr = np.zeros(shp)
ns_arr = np.zeros(shp)
trip_idx = 0
shuffle = np.arange(nrof_triplets)
np.random.shuffle(shuffle)
emb_start_idx = 0
nrof_random_negs = 0
for i in xrange(people_per_batch):
n = num_per_class[i]
for j in range(1,n):
a_idx = emb_start_idx
p_idx = emb_start_idx + j
as_arr[shuffle[trip_idx]] = image_data[a_idx]
ps_arr[shuffle[trip_idx]] = image_data[p_idx]
# Select a semi-hard negative that has a distance
# further away from the positive exemplar.
pos_dist = dist(embeddings[a_idx][:], embeddings[p_idx][:])
sel_neg_idx = emb_start_idx
while sel_neg_idx>=emb_start_idx and sel_neg_idx<=emb_start_idx+n-1:
sel_neg_idx = (np.random.randint(1, 2**32) % nrof_images) -1 # Seems to give the same result as the lua implementation
#sel_neg_idx = np.random.random_integers(0, nrof_images-1)
sel_neg_dist = dist(embeddings[a_idx][:], embeddings[sel_neg_idx][:])
random_neg = True
for k in range(nrof_images):
if k<emb_start_idx or k>emb_start_idx+n-1:
neg_dist = dist(embeddings[a_idx][:], embeddings[k][:])
if pos_dist<neg_dist and neg_dist<sel_neg_dist and np.abs(pos_dist-neg_dist)<alpha:
random_neg = False
sel_neg_dist = neg_dist
sel_neg_idx = k
if random_neg:
nrof_random_negs += 1
ns_arr[shuffle[trip_idx]] = image_data[sel_neg_idx]
#print('Triplet %d: (%d, %d, %d), pos_dist=%2.3f, neg_dist=%2.3f, sel_neg_dist=%2.3f' % (trip_idx, a_idx, p_idx, sel_neg_idx, pos_dist, neg_dist, sel_neg_dist))
trip_idx += 1
emb_start_idx += n
triplets = (as_arr, ps_arr, ns_arr)
return triplets, nrof_random_negs, nrof_triplets
def select_validation_triplets(num_per_class, people_per_batch, image_data, batch_size):
nrof_images = image_data.shape[0]
nrof_trip = nrof_images - people_per_batch
shp = [nrof_trip, image_data.shape[1], image_data.shape[2], image_data.shape[3]]
as_arr = np.zeros(shp)
ps_arr = np.zeros(shp)
ns_arr = np.zeros(shp)
trip_idx = 0
shuffle = np.arange(nrof_trip)
np.random.shuffle(shuffle)
emb_start_idx = 0
for i in xrange(len(num_per_class)):
n = num_per_class[i]
for j in range(1,n):
a_idx = emb_start_idx
p_idx = emb_start_idx + j
as_arr[shuffle[trip_idx]] = image_data[a_idx]
ps_arr[shuffle[trip_idx]] = image_data[p_idx]
# Select a random negative example
sel_neg_idx = emb_start_idx
while sel_neg_idx>=emb_start_idx and sel_neg_idx<=emb_start_idx+n-1:
sel_neg_idx = (np.random.randint(1, 2**32) % nrof_images) -1
ns_arr[shuffle[trip_idx]] = image_data[sel_neg_idx]
trip_idx += 1
emb_start_idx += n
nrof_triplets = trip_idx // batch_size * batch_size
triplets = (as_arr[0:nrof_triplets,:,:,:], ps_arr[0:nrof_triplets,:,:,:], ns_arr[0:nrof_triplets,:,:,:])
return triplets, nrof_triplets
class ImageClass():
"Stores the paths to images for a given class"
def __init__(self, name, image_paths):
self.name = name
self.image_paths = image_paths
def __str__(self):
return self.name + ', ' + str(len(self.image_paths)) + ' images'
def __len__(self):
return len(self.image_paths)
def get_dataset(paths):
dataset = []
for path in paths.split(':'):
path_exp = os.path.expanduser(path)
classes = os.listdir(path_exp)
classes.sort()
nrof_classes = len(classes)
for i in range(nrof_classes):
class_name = classes[i]
facedir = os.path.join(path_exp, class_name)
if os.path.isdir(facedir):
images = os.listdir(facedir)
image_paths = map(lambda x: os.path.join(facedir,x), images)
dataset.append(ImageClass(class_name, image_paths))
return dataset
def split_dataset(dataset, split_ratio, mode):
if mode=='SPLIT_CLASSES':
nrof_classes = len(dataset)
class_indices = np.arange(nrof_classes)
np.random.shuffle(class_indices)
split = int(round(nrof_classes*split_ratio))
train_set = [dataset[i] for i in class_indices[0:split]]
test_set = [dataset[i] for i in class_indices[split:-1]]
elif mode=='SPLIT_IMAGES':
train_set = []
test_set = []
min_nrof_images = 2
for cls in dataset:
paths = cls.image_paths
np.random.shuffle(paths)
split = int(round(len(paths)*split_ratio))
if split<min_nrof_images:
# If the number of train set images are too few we throw an exception
raise ValueError('Too few images in train set (%d) for class "%s"' % (split, cls.name))
if len(paths)-split<min_nrof_images:
# If the number of test set images are too few we use all images for training
split = len(paths)
train_set.append(ImageClass(cls.name, paths[0:split]))
if split<len(paths):
test_set.append(ImageClass(cls.name, paths[split:-1]))
else:
raise ValueError('Invalid train/test split mode "%s"' % mode)
return train_set, test_set
def sample_people(dataset, people_per_batch, images_per_person):
nrof_images = people_per_batch * images_per_person
# Sample classes from the dataset
nrof_classes = len(dataset)
class_indices = np.arange(nrof_classes)
np.random.shuffle(class_indices)
i = 0
image_paths = []
num_per_class = []
sampled_class_indices = []
# Sample images from these classes until we have enough
while len(image_paths)<nrof_images:
class_index = class_indices[i]
nrof_images_in_class = len(dataset[class_index])
image_indices = np.arange(nrof_images_in_class)
np.random.shuffle(image_indices)
nrof_images_from_class = min(nrof_images_in_class, images_per_person, nrof_images-len(image_paths))
idx = image_indices[0:nrof_images_from_class]
image_paths_for_class = [dataset[class_index].image_paths[j] for j in idx]
sampled_class_indices += [class_index]*nrof_images_from_class
image_paths += image_paths_for_class
num_per_class.append(nrof_images_from_class)
i+=1
return image_paths, num_per_class
def calculate_roc(thresholds, embeddings1, embeddings2, actual_issame, seed):
assert(embeddings1.shape[0] == embeddings2.shape[0])
assert(embeddings1.shape[1] == embeddings2.shape[1])
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
nrof_folds = 10
folds = KFold(n=nrof_pairs, n_folds=nrof_folds, shuffle=True, random_state=seed)
tprs = np.zeros((nrof_folds,nrof_thresholds))
fprs = np.zeros((nrof_folds,nrof_thresholds))
accuracy = np.zeros((nrof_folds))
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff),1)
for fold_idx, (train, test) in enumerate(folds):
# Find the best threshold for the fold
acc_train = np.zeros((nrof_thresholds))
for threshold_idx, threshold in enumerate(thresholds):
_, _, acc_train[threshold_idx] = calculate_accuracy(threshold, dist[train], actual_issame[train])
best_threshold_index = np.argmax(acc_train)
for threshold_idx, threshold in enumerate(thresholds):
tprs[fold_idx,threshold_idx], fprs[fold_idx,threshold_idx], _ = calculate_accuracy(threshold, dist[test], actual_issame[test])
_, _, accuracy[fold_idx] = calculate_accuracy(thresholds[best_threshold_index], dist[test], actual_issame[test])
tpr = np.mean(tprs,0)
fpr = np.mean(fprs,0)
return tpr, fpr, accuracy
def calculate_accuracy(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
tp = np.sum(np.logical_and(predict_issame, actual_issame))
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame)))
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
tpr = 0 if (tp+fn==0) else float(tp) / float(tp+fn)
fpr = 0 if (fp+tn==0) else float(fp) / float(fp+tn)
acc = float(tp+tn)/dist.size
return tpr, fpr, acc
def plot_roc(fpr, tpr, label):
plt.plot(fpr, tpr, label=label)
plt.title('Receiver Operating Characteristics')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend()
plt.plot([0, 1], [0, 1], 'g--')
plt.grid(True)
plt.show()