forked from t3nsor/codebook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
geom-3d.cpp
194 lines (179 loc) · 5.28 KB
/
geom-3d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#define LINE 0
#define SEGMENT 1
#define RAY 2
struct point {
double x, y, z;
point(){};
point(double _x, double _y, double _z) {
x = _x;
y = _y;
z = _z;
}
point operator+(point p) {
return point(x + p.x, y + p.y, z + p.z);
}
point operator-(point p) {
return point(x - p.x, y - p.y, z - p.z);
}
point operator*(double c) {
return point(x * c, y * c, z * c);
}
};
double dot(point a, point b) {
return a.x * b.x + a.y * b.y + a.z * b.z;
}
point cross(point a, point b) {
return point(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z,
a.x * b.y - a.y * b.x);
}
double distSq(point a, point b) { return dot(a - b, a - b); }
// compute a, b, c, d such that all points lie on ax + by +
// cz = d. TODO: test this
double planeFromPts(point p1, point p2, point p3, double &a,
double &b, double &c, double &d) {
point normal = cross(p2 - p1, p3 - p1);
a = normal.x;
b = normal.y;
c = normal.z;
d = -a * p1.x - b * p1.y - c * p1.z;
}
// project point onto plane. TODO: test this
point ptPlaneProj(point p, double a, double b, double c,
double d) {
double l = (a * p.x + b * p.y + c * p.z + d) /
(a * a + b * b + c * c);
return point(p.x - a * l, p.y - b * l, p.z - c * l);
}
// distance from point p to plane aX + bY + cZ + d = 0
double ptPlaneDist(point p, double a, double b, double c,
double d) {
return fabs(a * p.x + b * p.y + c * p.z + d) /
sqrt(a * a + b * b + c * c);
}
// distance between parallel planes aX + bY + cZ + d1 = 0
// and aX + bY + cZ + d2 = 0
double planePlaneDist(double a, double b, double c, double d1,
double d2) {
return fabs(d1 - d2) / sqrt(a * a + b * b + c * c);
}
// square distance between point and line, ray or segment
double ptLineDistSq(point s1, point s2, point p, int type) {
double pd2 = distSq(s1, s2);
point r;
if (pd2 == 0)
r = s1;
else {
double u = dot(p - s1, s2 - s1) / pd2;
r = s1 + (s2 - s1) * u;
if (type != LINE && u < 0.0)
r = s1;
if (type == SEGMENT && u > 1.0)
r = s2;
}
return distSq(r, p);
}
// Distance between lines ab and cd. TODO: Test this
double lineLineDistance(point a, point b, point c, point d) {
point v1 = b - a;
point v2 = d - c;
point cr = cross(v1, v2);
if (dot(cr, cr) < EPS) {
point proj = v1 * (dot(v1, c - a) / dot(v1, v1));
return sqrt(dot(c - a - proj, c - a - proj));
} else {
point n = cr / sqrt(dot(cr, cr));
point p = dot(n, c - a);
return sqrt(dot(p, p));
}
}
// Distance between line segments ab and cd
double segmentSegmentDistance(point a, point b, point c,
point d) {
point u = b - a, v = d - c, w = a - c;
double a = dot(u, u), b = dot(u, v), c = dot(v, v),
d = dot(u, w), e = dot(v, w);
double D = a * c - b * b;
double sc, sN, sD = D;
double tc, tN, tD = D;
// compute the line parameters of the two closest points
if (D < EPS) { // the lines are almost parallel
sN = 0.0; // force using point P0 on segment S1
sD = 1.0; // to prevent possible division by 0.0 later
tN = e;
tD = c;
} else { // get the closest points on the infinite lines
sN = (b * e - c * d);
tN = (a * e - b * d);
if (sN < 0.0) { // sc < 0 => the s=0 edge is visible
sN = 0.0;
tN = e;
tD = c;
} else if (sN > sD) { // sc > 1 => the s=1 edge is visible
sN = sD;
tN = e + b;
tD = c;
}
}
if (tN < 0.0) { // tc < 0 => the t=0 edge is visible
tN = 0.0;
// recompute sc for this edge
if (-d < 0.0)
sN = 0.0;
else if (-d > a)
sN = sD;
else {
sN = -d;
sD = a;
}
} else if (tN > tD) { // tc > 1 => the t=1 edge is visible
tN = tD;
// recompute sc for this edge
if ((-d + b) < 0.0)
sN = 0;
else if ((-d + b) > a)
sN = sD;
else {
sN = (-d + b);
sD = a;
}
}
// finally do the division to get sc and tc
sc = (abs(sN) < EPS ? 0.0 : sN / sD);
tc = (abs(tN) < EPS ? 0.0 : tN / tD);
// get the difference of the two closest points
point dP = w + (sc * u) - (tc * v); // = S1(sc) - S2(tc)
return sqrt(dot(dP, dP)); // return the closest distance
}
double signedTetrahedronVol(point A, point B, point C,
point D) {
double A11 = A.x - B.x;
double A12 = A.x - C.x;
double A13 = A.x - D.x;
double A21 = A.y - B.y;
double A22 = A.y - C.y;
double A23 = A.y - D.y;
double A31 = A.z - B.z;
double A32 = A.z - C.z;
double A33 = A.z - D.z;
double det = A11 * A22 * A33 + A12 * A23 * A31 +
A13 * A21 * A32 - A11 * A23 * A32 -
A12 * A21 * A33 - A13 * A22 * A31;
return det / 6;
}
// Parameter is a vector of vectors of points - each
// interior vector represents the 3 points that make up 1
// face, in any order. Note: The polyhedron must be convex,
// with all faces given as triangles.
double polyhedronVol(vector<vector<point>> poly) {
int i, j;
point cent(0, 0, 0);
for (i = 0; i < poly.size(); i++)
for (j = 0; j < 3; j++)
cent = cent + poly[i][j];
cent = cent * (1.0 / (poly.size() * 3));
double v = 0;
for (i = 0; i < poly.size(); i++)
v += fabs(signedTetrahedronVol(cent, poly[i][0], poly[i][1],
poly[i][2]));
return v;
}