forked from t3nsor/codebook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
geom-2d.cpp
228 lines (207 loc) · 6.62 KB
/
geom-2d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// C++ routines for computational geometry.
double INF = 1e100;
double EPS = 1e-12;
struct PT {
double x, y;
PT() {}
PT(double x, double y) : x(x), y(y) {}
PT(const PT &p) : x(p.x), y(p.y) {}
PT operator+(const PT &p) const {
return PT(x + p.x, y + p.y);
}
PT operator-(const PT &p) const {
return PT(x - p.x, y - p.y);
}
PT operator*(double c) const { return PT(x * c, y * c); }
PT operator/(double c) const { return PT(x / c, y / c); }
};
double dot(PT p, PT q) { return p.x * q.x + p.y * q.y; }
double dist2(PT p, PT q) { return dot(p - q, p - q); }
double cross(PT p, PT q) { return p.x * q.y - p.y * q.x; }
ostream &operator<<(ostream &os, const PT &p) {
os << "(" << p.x << "," << p.y << ")";
}
// rotate a point CCW or CW around the origin
PT RotateCCW90(PT p) { return PT(-p.y, p.x); }
PT RotateCW90(PT p) { return PT(p.y, -p.x); }
PT RotateCCW(PT p, double t) {
return PT(p.x * cos(t) - p.y * sin(t),
p.x * sin(t) + p.y * cos(t));
}
// project point c onto line through a and b
// assuming a != b
PT ProjectPointLine(PT a, PT b, PT c) {
return a + (b - a) * dot(c - a, b - a) / dot(b - a, b - a);
}
// project point c onto line segment through a and b
// if the projection doesn't lie on the segment, returns
// closest vertex
PT ProjectPointSegment(PT a, PT b, PT c) {
double r = dot(b - a, b - a);
if (fabs(r) < EPS)
return a;
r = dot(c - a, b - a) / r;
if (r < 0)
return a;
if (r > 1)
return b;
return a + (b - a) * r;
}
// compute distance from c to segment between a and b
double DistancePointSegment(PT a, PT b, PT c) {
return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
}
// determine if lines from a to b and c to d are parallel or
// collinear
bool LinesParallel(PT a, PT b, PT c, PT d) {
return fabs(cross(b - a, c - d)) < EPS;
}
bool LinesCollinear(PT a, PT b, PT c, PT d) {
return LinesParallel(a, b, c, d) &&
fabs(cross(a - b, a - c)) < EPS &&
fabs(cross(c - d, c - a)) < EPS;
}
// determine if line segment from a to b intersects with
// line segment from c to d
bool SegmentsIntersect(PT a, PT b, PT c, PT d) {
if (LinesCollinear(a, b, c, d)) {
if (dist2(a, c) < EPS || dist2(a, d) < EPS ||
dist2(b, c) < EPS || dist2(b, d) < EPS)
return true;
if (dot(c - a, c - b) > 0 && dot(d - a, d - b) > 0 &&
dot(c - b, d - b) > 0)
return false;
return true;
}
if (cross(d - a, b - a) * cross(c - a, b - a) > 0)
return false;
if (cross(a - c, d - c) * cross(b - c, d - c) > 0)
return false;
return true;
}
// compute intersection of line passing through a and b
// with line passing through c and d, assuming that unique
// intersection exists; for segment intersection, check if
// segments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
b = b - a;
d = c - d;
c = c - a;
assert(dot(b, b) > EPS && dot(d, d) > EPS);
return a + b * cross(c, d) / cross(b, d);
}
// determine if c and d are on same side of line passing
// through a and b
bool OnSameSide(PT a, PT b, PT c, PT d) {
return cross(c - a, c - b) * cross(d - a, d - b) > 0;
}
// compute center of circle given three points
PT ComputeCircleCenter(PT a, PT b, PT c) {
b = (a + b) / 2;
c = (a + c) / 2;
return ComputeLineIntersection(b, b + RotateCW90(a - b), c,
c + RotateCW90(a - c));
}
// determine if point is in a possibly non-convex polygon
// (by William Randolph Franklin); returns 1 for strictly
// interior points, 0 for strictly exterior points, and 0 or
// 1 for the remaining points. Note that it is possible to
// convert this into an *exact* test using integer
// arithmetic by taking care of the division appropriately
// (making sure to deal with signs properly) and then by
// writing exact tests for checking point on polygon
// boundary
bool PointInPolygon(const vector<PT> &p, PT q) {
bool c = 0;
for (int i = 0; i < p.size(); i++) {
int j = (i + 1) % p.size();
if ((p[i].y <= q.y && q.y < p[j].y ||
p[j].y <= q.y && q.y < p[i].y) &&
q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) /
(p[j].y - p[i].y))
c = !c;
}
return c;
}
// determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector<PT> &p, PT q) {
for (int i = 0; i < p.size(); i++)
if (dist2(
ProjectPointSegment(p[i], p[(i + 1) % p.size()], q),
q) < EPS)
return true;
return false;
}
// compute intersection of line through points a and b with
// circle centered at c with radius r > 0
vector<PT> CircleLineIntersection(PT a, PT b, PT c, double r) {
vector<PT> ret;
b = b - a;
a = a - c;
double A = dot(b, b);
double B = dot(a, b);
double C = dot(a, a) - r * r;
double D = B * B - A * C;
if (D < -EPS)
return ret;
ret.push_back(c + a + b * (-B + sqrt(D + EPS)) / A);
if (D > EPS)
ret.push_back(c + a + b * (-B - sqrt(D)) / A);
return ret;
}
// compute intersection of circle centered at a with radius
// r with circle centered at b with radius R
vector<PT> CircleCircleIntersection(PT a, PT b, double r,
double R) {
vector<PT> ret;
double d = sqrt(dist2(a, b));
if (d > r + R || d + min(r, R) < max(r, R))
return ret;
double x = (d * d - R * R + r * r) / (2 * d);
double y = sqrt(r * r - x * x);
PT v = (b - a) / d;
ret.push_back(a + v * x + RotateCCW90(v) * y);
if (y > 0)
ret.push_back(a + v * x - RotateCCW90(v) * y);
return ret;
}
// This code computes the area or centroid of a (possibly
// nonconvex) polygon, assuming that the coordinates are
// listed in a clockwise or counterclockwise fashion. Note
// that the centroid is often known as the "center of
// gravity" or "center of mass".
double ComputeSignedArea(const vector<PT> &p) {
double area = 0;
for (int i = 0; i < p.size(); i++) {
int j = (i + 1) % p.size();
area += p[i].x * p[j].y - p[j].x * p[i].y;
}
return area / 2.0;
}
double ComputeArea(const vector<PT> &p) {
return fabs(ComputeSignedArea(p));
}
PT ComputeCentroid(const vector<PT> &p) {
PT c(0, 0);
double scale = 6.0 * ComputeSignedArea(p);
for (int i = 0; i < p.size(); i++) {
int j = (i + 1) % p.size();
c = c + (p[i] + p[j]) * (p[i].x * p[j].y - p[j].x * p[i].y);
}
return c / scale;
}
// tests whether or not a given polygon (in CW or CCW order)
// is simple
bool IsSimple(const vector<PT> &p) {
for (int i = 0; i < p.size(); i++) {
for (int k = i + 1; k < p.size(); k++) {
int j = (i + 1) % p.size();
int l = (k + 1) % p.size();
if (i == l || j == k)
continue;
if (SegmentsIntersect(p[i], p[j], p[k], p[l]))
return false;
}
}
return true;
}