-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsmoke_test.sh
executable file
·92 lines (82 loc) · 2.32 KB
/
smoke_test.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/bin/bash
set -e
LOGDIR=./logs_smoke_test
N_EPOCHS=3
mkdir -p $LOGDIR
echo "##########################################"
echo " Running smoke test "
echo ""
echo "Logging to $LOGDIR"
echo "##########################################"
for loss_fn in likelihood mse moment_matching student_t vari_var_xvamp vari_var_xvamp_star vari_var_vbem vari_var_vbem_star
do
echo "### Testing toy-sinusoidal with $loss_fn"
python -m src.train --log_dir $LOGDIR --log_every=1 --n_epochs $N_EPOCHS \
--name sine_11_$loss_fn \
--dataset 11 \
--training $loss_fn \
--loss-weight 1 \
--batch_size 100 \
--lr 0.0005 \
--hidden_activation tanh \
--hidden_dims 64 64
echo "### Testing 1D-Slide with $loss_fn"
python -m src.train --log_dir $LOGDIR --log_every=1 --n_epochs $N_EPOCHS \
--name 1dslide_$loss_fn \
--dataset 1dslide \
--data_variant random2k \
--standardize-inputs \
--eval-test \
--training $loss_fn \
--loss-weight 1 \
--batch_size 256 \
--lr 0.0005 \
--hidden_activation tanh \
--hidden_dims 64 64 \
--track-best-metrics eval_likelihood
echo "### Testing FetchPickAndPlace with $loss_fn"
python -m src.train --log_dir $LOGDIR --log_every=1 --n_epochs $N_EPOCHS \
--name fpp_$loss_fn \
--dataset fpp \
--standardize-inputs \
--eval-test \
--training $loss_fn \
--loss-weight 0.5 \
--batch_size 256 \
--lr 0.0005 \
--hidden_activation tanh \
--hidden_dims 64 64 \
--track-best-metrics eval_likelihood \
--train-split 0.7 \
--test-split 0.15
if [ $loss_fn != "mse" ]; then
echo "### Testing MNIST with $loss_fn"
python -m src.train --log_dir $LOGDIR --log_every=1 --n_epochs $N_EPOCHS \
--name mnist_$loss_fn \
--device cuda \
--dataset mnist \
--eval-test \
--train-split 0.8 \
--training $loss_fn \
--loss-weight 0.5 \
--batch_size 250 \
--lr 0.0003 \
--model-type VAE \
--latent-dims 10 \
--hidden_activation relu \
--hidden_dims 512 256 128 \
--early-stop-metric eval_likelihood \
--early-stop-iters 2
fi
echo "### Testing UCI energy with $loss_fn"
python -m src.train_uci --log_dir $LOGDIR --log_every=1 \
--name uci_energy_$loss_fn \
--data-variant energy \
--n_splits 3 \
--training $loss_fn \
--loss-weight 0.5 \
--batch_size 100 \
--n_updates 100 \
--hidden_dims 50
done
rm -r $LOGDIR