-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathmain.py
56 lines (44 loc) · 2.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from src.dqn_agent import DQNAgent
from src.drqn_agent import DRQNAgent
from src.config import RetroConfig, GymConfig
import sys
import argparse
class Main():
def __init__(self, net_type, conf):
if net_type == "drqn":
self.agent = DRQNAgent(conf)
else:
self.agent = DQNAgent(conf)
def train(self, steps):
self.agent.train(steps)
def play(self, episodes, net_path):
self.agent.play(episodes, net_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="DRQN")
parser.add_argument("--gym", type=str, default="gym", help="Type of the environment. Can either be 'gym' or 'retro'")
parser.add_argument("--network_type", type=str, default="dqn", help="Type of the network to build, can either be 'dqn' or 'drqn'")
parser.add_argument("--env_name", type=str, default="Breakout-v0", help="Name of the gym/retro environment used to train the agent")
parser.add_argument("--retro_state", type=str, default="Start", help="Name of the state (level) to start training. This is only necessary for retro envs")
parser.add_argument("--train", type=str, default="True", help="Whether to train a network or to play with a given network")
parser.add_argument("--model_dir", type=str, default="saved_session/net/", help="directory to save the model and replay memory during training")
parser.add_argument("--net_path", type=str, default="", help="path to checkpoint of model")
parser.add_argument("--steps", type=int, default=50000000, help="number of frames to train")
args, remaining = parser.parse_known_args()
if args.gym == "gym":
conf = GymConfig()
conf.env_name = args.env_name
else:
conf = RetroConfig()
conf.env_name = args.env_name
conf.state = args.retro_state
conf.network_type = args.network_type
conf.train = args.train
conf.dir_save = args.model_dir
conf.train_steps = args.steps
main = Main(conf.network_type, conf)
if conf.train == "True":
print(conf.train)
main.train(conf.train_steps)
else:
assert args.net_path != "", "Please specify a net_path using the option --net_path"
main.play(100000, args.net_path)