-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathmain_pix4d.cpp
444 lines (364 loc) · 15.6 KB
/
main_pix4d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
* Line3D++ - Line-based Multi View Stereo
* Copyright (C) 2015 Manuel Hofer
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/.
*/
// check libs
#include "configLIBS.h"
// EXTERNAL
#include <tclap/CmdLine.h>
#include <tclap/CmdLineInterface.h>
#include <boost/filesystem.hpp>
#include "eigen3/Eigen/Eigen"
// std
#include <iostream>
#include <fstream>
// opencv
#ifdef L3DPP_OPENCV3
#include <opencv2/highgui.hpp>
#else
#include <opencv/highgui.h>
#endif //L3DPP_OPENCV3
// lib
#include "line3D.h"
// helper function for point triangulation
Eigen::Vector3d linearHomTriangulation(std::list<std::pair<size_t,Eigen::Vector2d> >& obs,
std::vector<Eigen::MatrixXd>& P)
{
if(obs.size() == 0 || P.size() == 0)
return Eigen::Vector3d(0,0,0);
std::vector<Eigen::MatrixXd> Sx(obs.size(), Eigen::MatrixXd::Zero(2,3));
Eigen::MatrixXd A = Eigen::MatrixXd::Zero(obs.size() * 2 , 4);
std::list<std::pair<size_t,Eigen::Vector2d> >::iterator it = obs.begin();
for(size_t i=0; it!=obs.end(); ++i,++it)
{
Eigen::Vector2d pt = (*it).second;
size_t camID = (*it).first;
Sx[i](0,1) = -1; Sx[i](0,2) = pt.y();
Sx[i](1,0) = 1; Sx[i](1,2) = -pt.x();
A.block<2,4>(i*2,0) = Sx[i] * P[camID];
}
Eigen::MatrixXd AtA(4, 4);
AtA = A.transpose() * A;
Eigen::MatrixXd U,V;
Eigen::JacobiSVD<Eigen::MatrixXd> svd(AtA, Eigen::ComputeThinU | Eigen::ComputeThinV);
U = svd.matrixU();
V = svd.matrixV();
Eigen::VectorXd X;
X = V.col(3);
X /= X(3);
return Eigen::Vector3d(X(0),X(1),X(2));
}
// INFO:
// This executable reads Pix4D results (<project_prefix>/1_initial/params/*.txt) and executes the Line3D++ algorithm.
// If distortion coefficients are stored in the result file, you need to use the _original_ (distorted) images!
//
// NOTE:
// The algorithm takes the camera poses from the <project_prefix>_calibrated_camera_parameters.txt file,
// which means they are metrically correct, but in a local coordinate system! If you want to view the 3D lines
// together with the georeferenced 3D points from Pix4D you need to apply the appropriate transformation.
int main(int argc, char *argv[])
{
TCLAP::CmdLine cmd("LINE3D++");
TCLAP::ValueArg<std::string> inputArg("i", "input_folder", "folder containing the images", true, ".", "string");
cmd.add(inputArg);
TCLAP::ValueArg<std::string> pix4dArg("b", "params_folder", "folder containing the proeject files <project_prefix>_calibrated_camera_parameters.txt and <project_prefix>_tp_pix4d.txt", true, "", "string");
cmd.add(pix4dArg);
TCLAP::ValueArg<std::string> prefixArg("f", "project_prefix", "project name and output file prefix", true, "", "string");
cmd.add(prefixArg);
TCLAP::ValueArg<std::string> outputArg("o", "output_folder", "folder where result and temporary files are stored (if not specified --> image_folder+'/Line3D++/')", false, "", "string");
cmd.add(outputArg);
TCLAP::ValueArg<int> scaleArg("w", "max_image_width", "scale image down to fixed max width for line segment detection", false, L3D_DEF_MAX_IMG_WIDTH, "int");
cmd.add(scaleArg);
TCLAP::ValueArg<int> neighborArg("n", "num_matching_neighbors", "number of neighbors for matching", false, L3D_DEF_MATCHING_NEIGHBORS, "int");
cmd.add(neighborArg);
TCLAP::ValueArg<float> sigma_A_Arg("a", "sigma_a", "angle regularizer", false, L3D_DEF_SCORING_ANG_REGULARIZER, "float");
cmd.add(sigma_A_Arg);
TCLAP::ValueArg<float> sigma_P_Arg("p", "sigma_p", "position regularizer (if negative: fixed sigma_p in world-coordinates)", false, L3D_DEF_SCORING_POS_REGULARIZER, "float");
cmd.add(sigma_P_Arg);
TCLAP::ValueArg<float> epipolarArg("e", "min_epipolar_overlap", "minimum epipolar overlap for matching", false, L3D_DEF_EPIPOLAR_OVERLAP, "float");
cmd.add(epipolarArg);
TCLAP::ValueArg<int> knnArg("k", "knn_matches", "number of matches to be kept (<= 0 --> use all that fulfill overlap)", false, L3D_DEF_KNN, "int");
cmd.add(knnArg);
TCLAP::ValueArg<int> segNumArg("y", "num_segments_per_image", "maximum number of 2D segments per image (longest)", false, L3D_DEF_MAX_NUM_SEGMENTS, "int");
cmd.add(segNumArg);
TCLAP::ValueArg<int> visibilityArg("v", "visibility_t", "minimum number of cameras to see a valid 3D line", false, L3D_DEF_MIN_VISIBILITY_T, "int");
cmd.add(visibilityArg);
TCLAP::ValueArg<bool> diffusionArg("d", "diffusion", "perform Replicator Dynamics Diffusion before clustering", false, L3D_DEF_PERFORM_RDD, "bool");
cmd.add(diffusionArg);
TCLAP::ValueArg<bool> loadArg("l", "load_and_store_flag", "load/store segments (recommended for big images)", false, L3D_DEF_LOAD_AND_STORE_SEGMENTS, "bool");
cmd.add(loadArg);
TCLAP::ValueArg<float> collinArg("r", "collinearity_t", "threshold for collinearity", false, L3D_DEF_COLLINEARITY_T, "float");
cmd.add(collinArg);
TCLAP::ValueArg<bool> cudaArg("g", "use_cuda", "use the GPU (CUDA)", false, true, "bool");
cmd.add(cudaArg);
TCLAP::ValueArg<bool> ceresArg("c", "use_ceres", "use CERES (for 3D line optimization)", false, L3D_DEF_USE_CERES, "bool");
cmd.add(ceresArg);
TCLAP::ValueArg<float> constRegDepthArg("z", "const_reg_depth", "use a constant regularization depth (only when sigma_p is metric!)", false, -1.0f, "float");
cmd.add(constRegDepthArg);
// read arguments
cmd.parse(argc,argv);
std::string imageFolder = inputArg.getValue().c_str();
std::string paramsFolder = pix4dArg.getValue().c_str();
std::string outputFolder = outputArg.getValue().c_str();
std::string projextPrefix = prefixArg.getValue().c_str();
if(outputFolder.length() == 0)
outputFolder = imageFolder+"/Line3D++/";
int maxWidth = scaleArg.getValue();
unsigned int neighbors = std::max(neighborArg.getValue(),2);
bool diffusion = diffusionArg.getValue();
bool loadAndStore = loadArg.getValue();
float collinearity = collinArg.getValue();
bool useGPU = cudaArg.getValue();
bool useCERES = ceresArg.getValue();
float epipolarOverlap = fmin(fabs(epipolarArg.getValue()),0.99f);
float sigmaA = fabs(sigma_A_Arg.getValue());
float sigmaP = sigma_P_Arg.getValue();
int kNN = knnArg.getValue();
unsigned int maxNumSegments = segNumArg.getValue();
unsigned int visibility_t = visibilityArg.getValue();
float constRegDepth = constRegDepthArg.getValue();
// check if parameter files exist
std::string params_prefix = paramsFolder+"/"+projextPrefix;
if(params_prefix.substr(params_prefix.length()-1,1) != "_")
params_prefix += "_";
std::string file1 = params_prefix+"calibrated_camera_parameters.txt";
std::string file2 = params_prefix+"tp_pix4d.txt";
boost::filesystem::path pf1(file1);
boost::filesystem::path pf2(file2);
if(!boost::filesystem::exists(pf1) || !boost::filesystem::exists(pf2))
{
std::cerr << "pix4d file '" << file1 << "' or '" << std::endl << file2 << "' does not exist!" << std::endl;
return -1;
}
// create output directory
boost::filesystem::path dir(outputFolder);
boost::filesystem::create_directory(dir);
// create Line3D++ object
L3DPP::Line3D* Line3D = new L3DPP::Line3D(outputFolder,loadAndStore,maxWidth,
maxNumSegments,true,useGPU);
// camera parameter file
std::ifstream pix4d_cam_file;
pix4d_cam_file.open(file1.c_str());
std::string pix4d_cam_line;
// ignore descriptions...
while(std::getline(pix4d_cam_file,pix4d_cam_line))
{
if(pix4d_cam_line.length() < 2)
break;
}
// read camera data (sequentially)
std::map<std::string,size_t> img2pos;
std::map<size_t,std::string> pos2img;
std::vector<std::string> cams_filenames;
std::vector<Eigen::Matrix3d> cams_rotation;
std::vector<Eigen::Matrix3d> cams_intrinsic;
std::vector<Eigen::MatrixXd> cams_projection;
std::vector<Eigen::Vector3d> cams_translation;
std::vector<Eigen::Vector3d> cams_radial_dist;
std::vector<Eigen::Vector2d> cams_tangential_dist;
while(std::getline(pix4d_cam_file,pix4d_cam_line))
{
if(pix4d_cam_line.length() < 5)
break;
// filename
std::stringstream pix4d_stream(pix4d_cam_line);
std::string filename,width,height;
pix4d_stream >> filename >> width >> height;
size_t lastindex = filename.find_last_of(".");
std::string rawname = filename.substr(0, lastindex);
img2pos[rawname] = cams_filenames.size();
pos2img[cams_filenames.size()] = rawname;
cams_filenames.push_back(filename);
// intrinsics
Eigen::Matrix3d K;
for(size_t i=0; i<3; ++i)
{
std::getline(pix4d_cam_file,pix4d_cam_line);
pix4d_stream.clear();
pix4d_stream.str(pix4d_cam_line);
pix4d_stream >> K(i,0) >> K(i,1) >> K(i,2);
}
cams_intrinsic.push_back(K);
// radial distortion
Eigen::Vector3d radial;
std::getline(pix4d_cam_file,pix4d_cam_line);
pix4d_stream.clear();
pix4d_stream.str(pix4d_cam_line);
pix4d_stream >> radial(0) >> radial(1) >> radial(2);
cams_radial_dist.push_back(radial);
// tangential distortion
Eigen::Vector2d tangential;
std::getline(pix4d_cam_file,pix4d_cam_line);
pix4d_stream.clear();
pix4d_stream.str(pix4d_cam_line);
pix4d_stream >> tangential(0) >> tangential(1);
cams_tangential_dist.push_back(tangential);
// translation
Eigen::Vector3d t;
std::getline(pix4d_cam_file,pix4d_cam_line);
pix4d_stream.clear();
pix4d_stream.str(pix4d_cam_line);
pix4d_stream >> t(0) >> t(1) >> t(2);
// rotation
Eigen::Matrix3d R;
for(size_t i=0; i<3; ++i)
{
std::getline(pix4d_cam_file,pix4d_cam_line);
pix4d_stream.clear();
pix4d_stream.str(pix4d_cam_line);
pix4d_stream >> R(i,0) >> R(i,1) >> R(i,2);
}
cams_rotation.push_back(R);
t = -R*t;
cams_translation.push_back(t);
// projection
Eigen::MatrixXd P(3,4);
P.block<3,3>(0,0) = R;
P.block<3,1>(0,3) = t;
P = K*P;
cams_projection.push_back(P);
}
pix4d_cam_file.close();
// camera parameter file
std::ifstream pix4d_point_file;
pix4d_point_file.open(file2.c_str());
std::string pix4d_point_line;
// read point data
std::map<std::string,std::list<unsigned int> > featuresPerCam;
std::map<std::string,unsigned int> feat_key2id;
std::map<unsigned int,std::string> feat_id2key;
std::map<unsigned int,bool> feat_valid;
std::map<unsigned int,Eigen::Vector3d> feat_pos3D;
std::vector<std::list<std::pair<size_t,Eigen::Vector2d> > > feat_observations;
std::string key;
size_t key_img_pos;
while(std::getline(pix4d_point_file,pix4d_point_line))
{
std::string id,rest;
double px,py,scale;
std::stringstream pix4d_stream(pix4d_point_line);
pix4d_stream >> id >> rest;
if(id.length() < 2)
break;
if(id.substr(0,1) != "-")
{
if(rest.length() == 0)
{
// new key image
key = id;
key_img_pos = img2pos[key];
}
else
{
// new feature for current key image
pix4d_stream.clear();
pix4d_stream.str(pix4d_point_line);
pix4d_stream >> id >> px >> py >> scale;
// check for new feature
size_t fID;
if(feat_key2id.find(id) == feat_key2id.end())
{
// new feature
fID = feat_observations.size();
feat_key2id[id] = fID;
feat_id2key[fID] = id;
feat_valid[fID] = false;
feat_pos3D[fID] = Eigen::Vector3d(0,0,0);
feat_observations.push_back(std::list<std::pair<size_t,Eigen::Vector2d> >());
}
else
{
// existing feature
fID = feat_key2id[id];
}
// add observation
featuresPerCam[key].push_back(fID);
feat_observations[fID].push_back(std::pair<size_t,Eigen::Vector2d>(key_img_pos,
Eigen::Vector2d(px,py)));
}
}
}
pix4d_point_file.close();
std::cout << "Pix4D: #cameras = " << img2pos.size() << std::endl;
std::cout << "Pix4D: #points = " << feat_observations.size() << std::endl;
// triangulate points (parallel)
std::cout << "triangulating..." << std::endl;
#ifdef L3DPP_OPENMP
#pragma omp parallel for
#endif //L3DPP_OPENMP
for(int i=0; i<feat_observations.size(); ++i)
{
std::list<std::pair<size_t,Eigen::Vector2d> > obs = feat_observations[i];
if(obs.size() > 2)
{
Eigen::Vector3d P = linearHomTriangulation(obs,cams_projection);
if(P.norm() > L3D_EPS)
{
feat_valid[i] = true;
feat_pos3D[i] = P;
}
}
}
// load images (parallel)
#ifdef L3DPP_OPENMP
#pragma omp parallel for
#endif //L3DPP_OPENMP
for(int i=0; i<cams_rotation.size(); ++i)
{
// load image
std::string img_filename = imageFolder+"/"+cams_filenames[i];
cv::Mat image = cv::imread(img_filename,CV_LOAD_IMAGE_GRAYSCALE);
std::string key = pos2img[i];
if(featuresPerCam.find(key) != featuresPerCam.end())
{
// camera center
Eigen::Matrix3d Rt = cams_rotation[i].transpose();
Eigen::Vector3d C = Rt * (-1.0 * cams_translation[i]);
// compute median depth
std::vector<float> depths;
std::list<unsigned int> wpIDs = featuresPerCam[key];
std::list<unsigned int>::iterator it = wpIDs.begin();
for(; it!=wpIDs.end(); ++it)
{
if(feat_valid[*it])
{
Eigen::Vector3d P = feat_pos3D[*it];
depths.push_back((P-C).norm());
}
}
if(depths.size() > 2)
{
std::sort(depths.begin(),depths.end());
float med_depth = depths[depths.size()/2];
// undistort
cv::Mat img_undist;
Line3D->undistortImage(image,img_undist,cams_radial_dist[i],
cams_tangential_dist[i],cams_intrinsic[i]);
// add to system
Line3D->addImage(i,img_undist,cams_intrinsic[i],cams_rotation[i],
cams_translation[i],med_depth,wpIDs);
}
}
}
// match images
Line3D->matchImages(sigmaP,sigmaA,neighbors,epipolarOverlap,
kNN,constRegDepth);
// compute result
Line3D->reconstruct3Dlines(visibility_t,diffusion,collinearity,useCERES);
// save end result
std::vector<L3DPP::FinalLine3D> result;
Line3D->get3Dlines(result);
// save as STL
Line3D->saveResultAsSTL(outputFolder);
// save as OBJ
Line3D->saveResultAsOBJ(outputFolder);
// save as TXT
Line3D->save3DLinesAsTXT(outputFolder);
// save as BIN
Line3D->save3DLinesAsBIN(outputFolder);
// cleanup
delete Line3D;
}