-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtrain_toy.py
64 lines (46 loc) · 1.34 KB
/
train_toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
from torch import randint, randn
from torch.utils.data import Dataset, DataLoader
from torch.optim import Adam
from transfusion_pytorch import Transfusion, print_modality_sample
def divisible_by(num, den):
return (num % den) == 0
model = Transfusion(
num_text_tokens = 8,
dim_latent = 16,
modality_default_shape = (2,),
transformer = dict(
dim = 64,
depth = 1,
dim_head = 8,
heads = 2
)
).cuda()
class MockDataset(Dataset):
def __len__(self):
return 100
def __getitem__(self, idx):
return torch.ones((1,)).long(), randn(2, 16)
def cycle(iter_dl):
while True:
for batch in iter_dl:
yield batch
def collate_fn(data):
data = [*map(list, data)]
return data
mock_dataset = MockDataset()
dataloader = DataLoader(mock_dataset, batch_size = 4, collate_fn = collate_fn)
iter_dl = cycle(dataloader)
optimizer = Adam(model.parameters(), lr = 3e-4)
# train loop
for step in range(1, 10_000 + 1):
loss = model(next(iter_dl))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
optimizer.zero_grad()
print(f'{step}: {loss.item():.3f}')
# eval
if divisible_by(step, 100):
one_multimodal_sample = model.sample()
print_modality_sample(one_multimodal_sample)