-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpredict_gstreamer.py
160 lines (122 loc) · 5.67 KB
/
predict_gstreamer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import numpy as np
import torch
import torchvision.transforms.functional as TF
from torchvision.transforms import InterpolationMode, functional as TF
import cv2
import time
from wasr_t.data.transforms import PytorchHubNormalization
from wasr_t.mobile_wasr_t import wasr_temporal_lraspp_mobilenetv3, wasr_temporal_resnet101
from wasr_t.utils import load_weights, Option
SIZE = (256,192)
FPS = int(30)
# Colors corresponding to each segmentation class
SEGMENTATION_COLORS = np.array([
[247, 195, 37],
[41, 167, 224],
[90, 75, 164]
], np.uint8)
HIST_LEN = 5
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="WaSR Network Sequential Inference")
parser.add_argument("--hist-len", default=HIST_LEN, type=int,
help="Number of past frames to be considered in addition to the target frame (context length). Must match the value used in training.")
parser.add_argument("--weights", type=str, required=True,
help="Model weights file.")
parser.add_argument("--fp16", action='store_true',
help="Use half precision for inference.")
parser.add_argument("--gpus", default=-1,type=int,
help="Number of gpus (or GPU ids) used for training.")
parser.add_argument("--mobile", action='store_true',
help="Use smaller network network for mobile inference.")
parser.add_argument("--size", type=int, default=SIZE, nargs=2, help="Resize input frames to a specified size.")
return parser.parse_args()
def get_gstream_input(args) -> cv2.VideoCapture:
width, height = args.size
# pipeline from webcam
pipeline = f"v4l2src device=/dev/video0 ! video/x-raw,width=640,height=480,framerate={FPS}/1 ! videoconvert ! videoscale ! video/x-raw,format=BGR,width={width},height={height} ! appsink drop=true"
# pipeline from local video
# pipeline = f"filesrc location=MaSTr1325/images/wasrt_mobilenetv3_input.webm ! matroskademux ! vp9dec ! videoconvert ! videoscale ! video/x-raw,format=BGR,width={width},height={height} ! appsink drop=true"
cap = cv2.VideoCapture(pipeline, cv2.CAP_GSTREAMER)
return cap
def get_gstream_output(args) -> cv2.VideoWriter:
width, height = args.size
# pipeline_s = "appsrc ! videoconvert ! autovideosink sync=false"
pipeline_s = "appsrc ! videoconvert ! x264enc ! flvmux ! filesink location=out.flv"
out = cv2.VideoWriter(pipeline_s,cv2.CAP_GSTREAMER, 0, FPS, (width, height), True)
return out
def get_model(args):
if args.mobile:
model = wasr_temporal_lraspp_mobilenetv3(pretrained=False, hist_len=args.hist_len, sequential=True)
else:
model = wasr_temporal_resnet101(pretrained=False, hist_len=args.hist_len, sequential=True)
state_dict = load_weights(args.weights)
# if PyTorch 2.0's torch.compile() function generated these weights, then we need to remove
# the _orig_mod label from each parameter.
state_dict = {key.replace("_orig_mod.", "") : value for key, value in state_dict.items()}
model.load_state_dict(state_dict)
model = model.sequential()
model = model.eval()
if args.fp16:
model = model.half()
device = torch.device('cpu') if args.gpus == 0 else torch.device('cuda')
model = model.to(device)
model.device = device
model.backbone = torch.jit.optimize_for_inference(torch.jit.script(model.backbone))
model.decoder.arm1 = torch.jit.optimize_for_inference(torch.jit.script(model.decoder.arm1))
model.decoder.arm2 = torch.jit.optimize_for_inference(torch.jit.script(model.decoder.arm2))
model.decoder.ffm = torch.jit.optimize_for_inference(torch.jit.script(model.decoder.ffm))
model.decoder.aspp = torch.jit.optimize_for_inference(torch.jit.script(model.decoder.aspp))
return model
class Inferencer:
def __init__(self, model):
self.model = model
if any(p.dtype is torch.float16 for p in self.model.parameters()):
self.dtype = torch.float16
else:
self.dtype = torch.float32
def process_frame(self, frame : np.ndarray):
height,width,_ = frame.shape
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
tf = PytorchHubNormalization()
frame = tf(frame)
frame = torch.Tensor(frame).to(self.model.device).to(self.dtype)
frame = frame.unsqueeze(0)
with torch.inference_mode():
probs = self.model({'image': frame})['out']
probs = TF.resize(probs, (height, width), interpolation=InterpolationMode.BILINEAR)
out_class = probs.argmax(1).to(torch.uint8).squeeze().detach().cpu().numpy()
pred_mask = SEGMENTATION_COLORS[out_class]
pred_mask = cv2.cvtColor(pred_mask, cv2.COLOR_RGB2BGR)
return pred_mask
def main():
args = get_arguments()
print(f"Got arguments: {args}")
print("Initializing GStreamer input.")
cap = get_gstream_input(args)
print("Initializing GStreamer output.")
out = get_gstream_output(args)
print("Instantiating and compiling model.")
model = get_model(args)
inferencer = Inferencer(model)
print("Beginning inference.")
tic = time.time()
while cap.isOpened():
ret, frame = cap.read()
if ret:
frame = inferencer.process_frame(frame)
out.write(frame)
toc = time.time()
print(f"\rInstantaneous FPS {(1.0 / (toc - tic)) :.2f}.", end='')
tic = toc
time.sleep(0.0001)
print("Video capture is closed.")
# Release everything if job is finished
cap.release()
out.release()
if __name__ == '__main__':
main()