title | date | tags |
---|---|---|
airflow实战总结 |
2018-08-30 13:16:45 -0700 |
-
airflow是一款开源的,分布式任务调度框架,它将一个具有上下级依赖关系的工作流,组装成一个有向无环图。
-
特点:
- 分布式任务调度:允许一个工作流的task在多台worker上同时执行
- 可构建任务依赖:以有向无环图的方式构建任务依赖关系
- task原子性:工作流上每个task都是原子可重试的,一个工作流某个环节的task失败可自动或手动进行重试,不必从头开始任务
-
工作流示意图
- 一个dag�表示一个定时的工作流�,�包含一个或者多个具有依赖关系的task
-
task依赖图
-
架构图及集群角色
- webserver� : 提供web端服务�,以及会定时生成�子进程去扫描对应的目录下的dags,�并更新数据库�
- scheduler : 任务调度�服务,�根据dags生成任务,并提交到消息中间件队列中 (redis或rabbitMq)
- celery worker : �分布在不同的机器上,作为任务真正的的执行节点。通过监听�消息中间件: redis或rabbitMq 领取任务�
- flower : 监控worker进程的存活性,启动或关闭worker进程,查看运行的task
-
构建docker镜像
- 采用的airflow是未发行的1.10.0版本,原因是从1.10.0开始,支持时区的设置,而不是统一的UTC
//self.registry.domain 为docker私有镜像仓库 //self.mvn.registry.com maven 私有镜像仓库 //data0 为数据目录,data1为日志目录,运维统一配置日志清楚策略 #docker build --network host -t self.registry.domain/airflow_base_1.10.7:1.0.0 . FROM self.registry.domain/airflow/centos_base_7.4.1708:1.0.0 LABEL AIRFLOW=1.10.7 ARG CELERY_REDIS=4.1.1 ARG DOCKER_VERSION=1.13.1 ARG AIRFLOW_VERSION=1.10.7 ADD sbin /data0/airflow/sbin ENV SLUGIFY_USES_TEXT_UNIDECODE=yes \ #如果构建镜像的机器需要代理才能连接外网的话,配置https_proxy https_proxy=https://ip:port RUN curl http://self.mvn.registry.com/python/python-3.5.6.jar -o /tmp/Python-3.5.6.tgz && \ curl http://self.mvn.registry.com/airflow/${AIRFLOW_VERSION}/airflow-${AIRFLOW_VERSION}.jar -o /tmp/incubator-airflow-${AIRFLOW_VERSION}.tar.gz && \ curl http:/self.mvn.registry.com/docker/${DOCKER_VERSION}/docker-${DOCKER_VERSION}.jar -o /tmp/docker-${DOCKER_VERSION}.tar.gz && \ tar zxf /tmp/docker-${DOCKER_VERSION}.tar.gz -C /data0/software && \ tar zxf /tmp/Python-3.5.6.tgz -C /data0/software && \ tar zxf /tmp/incubator-airflow-${AIRFLOW_VERSION}.tar.gz -C /data0/software && \ yum install -y libtool-ltdl policycoreutils-python && \ rpm -ivh --force --nodeps /data0/software/docker-${DOCKER_VERSION}/docker-engine-selinux-${DOCKER_VERSION}-1.el7.centos.noarch.rpm && \ rpm -ivh --force --nodeps /data0/software/docker-${DOCKER_VERSION}/docker-engine-${DOCKER_VERSION}-1.el7.centos.x86_64.rpm && \ yum -y install gcc && yum -y install gcc-c++ && yum -y install make && \ yum -y install zlib-devel mysql-devel python-devel cyrus-sasl-devel cyrus-sasl-lib libxml2-devel libxslt-devel && \ cd /data0/software/Python-3.5.6 && ./configure && make && make install && \ ln -sf /usr/local/bin/pip3 /usr/local/bin/pip && \ ln -sf /usr/local/bin/python3 /usr/local/bin/python && \ cd /data0/software/incubator-airflow-${AIRFLOW_VERSION} && python setup.py install && \ pip install -i https://pypi.douban.com/simple/ apache-airflow[crypto,celery,hive,jdbc,mysql,hdfs,password,redis,devel_hadoop] && \ pip install -i https://pypi.douban.com/simple/ celery[redis]==$CELERY_REDIS && \ pip install -i https://pypi.douban.com/simple/ docutils && \ ln -sf /usr/local/lib/python3.5/site-packages/apache_airflow-1.10.0-py3.5.egg/airflow /data0/software/airflow && \ mkdir -p /data0/airflow/bin && \ ln -sf /data0/airflow/sbin/airflow-200.sh /data0/airflow/bin/200.sh && \ ln -sf /data0/airflow/sbin/airflow-503.sh /data0/airflow/bin/503.sh && \ chown -R root:root /data0/software/ && \ chown -R root:root /data0/airflow/ && \ chmod -R 775 /data0/airflow/sbin/* && \ chmod -R 775 /data0/airflow/bin/* && \ echo 'source /data0/airflow/sbin/init-airflow.sh' >> ~/.bashrc && \ rm -rf /tmp/* /data0/software/Python-3.5.6 /data0/software/incubator-airflow-${AIRFLOW_VERSION} /data0/software/docker-${DOCKER_VERSION} ENV PATH=$PATH:/data0/software/jdk/bin:/data0/software/airflow/bin:/data0/airflow/sbin/:/data0/airflow/sbin/airflow/:/data0/airflow/bin/ WORKDIR /data0/airflow/bin/
- 通过docker 启动容器的话需要暴露几个端口
webserver: 8081 worker: 8793 flower: 5555 //启动示例 docker run --name airflow -it -d --privileged --net=host -p 8081:8081 -p 5555:5555 -p 8793:8793 -v /var/run/docker.sock:/var/run/docker.sock -v /data1:/data1 -v /data0/airflow:/data0/airflow self.registry.domain/airflow_1.10.7:1.0.0
-
airflow 升级到未release的1.10.0的版本
//如果之前用的是低版本的话,需要执行 airflow upgradedb 来更新迁移数据库的schema //执行之前首先需要set mysql property set global explicit_defaults_for_timestamp=1 //会提示is readonly variable 需要在my.cnf中添加这个设置:explicit_defaults_for_timestamp=1 并重启mysql //update celery几个设置 celeryd_concurrency -> worker_concurrency celery_result_backend -> result_backend
- 修改时区,以及界面上执行时间的显示(airlfow 默认界面上还是按照UTC显示)
//需要update configuration default_timezone = Etc/GMT-8 //修改dags.html中的显示时间,使得界面上看起来方便 // jinjia2 传入转换函数,在views.py 的homeview的render中 //(方法验证有点问题,再优化) def utc2local(utc): epoch = time.mktime(utc.timetuple()) offset = datetime.fromtimestamp(epoch) - datetime.utcfromtimestamp(epoch) return utc + offset utc2local(last_run.execution_date).strftime("%Y-%m-%d %H:%M") utc2local(last_run.start_date).strftime("%Y-%m-%d %H:%M")`
-
airflow plugins 定制化开发
- 官方文档
- plugin 这个没法传给worker,还是得重新分发到各个worker节点,建议打入airflow基础镜像中
- 增加operator时需要重启webserver和scheduler
-
由于dag的删除现在官方没有暴露直接的api,而完整的删除又牵扯到多个表,总结出删除dag的sql如下
set @dag_id = 'BAD_DAG'; delete from airflow.xcom where dag_id = @dag_id; delete from airflow.task_instance where dag_id = @dag_id; delete from airflow.sla_miss where dag_id = @dag_id; delete from airflow.log where dag_id = @dag_id; delete from airflow.job where dag_id = @dag_id; delete from airflow.dag_run where dag_id = @dag_id; delete from airflow.dag where dag_id = @dag_id;
-
自己实现的200和503脚本,用于集群统一的上下线操作
- 200脚本
#!/usr/bin/env bash function usage() { echo -e "\n A tool used for starting airflow services Usage: 200.sh {webserver|worker|scheduler|flower} " } PORT=8081 ROLE=webserver ENV_ARGS="" check_alive() { PID=`netstat -nlpt | grep $PORT | awk '{print $7}' | awk -F "/" '{print $1}'` [ -n "$PID" ] && return 0 || return 1 } check_scheduler_alive() { PIDS=`ps -ef | grep "/usr/local/bin/airflow scheduler" | grep "python" | awk '{print $2}'` [ -n "$PIDS" ] && return 0 || return 1 } function get_host_ip(){ local host=$(ifconfig | grep "inet " | grep "\-\->" | awk '{print $2}' | tail -1) if [[ -z "$host" ]]; then host=$(ifconfig | grep "inet " | grep "broadcast" | awk '{print $2}' | tail -1) fi echo "${host}" } start_service() { if [ $ROLE = 'scheduler' ];then check_scheduler_alive else check_alive fi if [ $? -ne 0 ];then nohup airflow $ROLE $ENV_ARGS > $BASE_LOG_DIR/$ROLE/$ROLE.log 2>&1 & sleep 5 if [ $ROLE = 'scheduler' ];then check_scheduler_alive else check_alive fi if [ $? -ne 0 ];then echo "service start error" exit 1 else echo "service start success" exit 0 fi else echo "service alreay started" exit 0 fi } function main() { if [ -z "${POOL}" ]; then echo "the environment variable POOL cannot be empty" exit 1 fi source /data0/hcp/sbin/init-hcp.sh case "$1" in webserver) echo "starting airflow webserver" ROLE=webserver PORT=8081 start_service ;; worker) echo "starting airflow worker" ROLE=worker PORT=8793 local host_ip=$(get_host_ip) ENV_ARGS="-cn ${host_ip}@${host_ip}" start_service ;; flower) echo "starting airflow flower" ROLE=flower PORT=5555 start_service ;; scheduler) echo "starting airflow scheduler" ROLE=scheduler start_service ;; *) usage exit 1 esac } main "$@"
- 503脚本
#!/usr/bin/env bash function usage() { echo -e "\n A tool used for stop airflow services Usage: 200.sh {webserver|worker|scheduler|flower} " } function get_host_ip(){ local host=$(ifconfig | grep "inet " | grep "\-\->" | awk '{print $2}' | tail -1) if [[ -z "$host" ]]; then host=$(ifconfig | grep "inet " | grep "broadcast" | awk '{print $2}' | tail -1) fi echo "${host}" } function main() { if [ -z "${POOL}" ]; then echo "the environment variable POOL cannot be empty" exit 1 fi source /data0/hcp/sbin/init-hcp.sh case "$1" in webserver) echo "stopping airflow webserver" cat $AIRFLOW_HOME/airflow-webserver.pid | xargs kill -9 ;; worker) echo "stopping airflow worker" PORT=8793 PID=`netstat -nlpt | grep $PORT | awk '{print $7}' | awk -F "/" '{print $1}'` kill -9 $PID local host_ip=$(get_host_ip) ps -ef | grep celeryd | grep ${host_ip}@${host_ip} | awk '{print $2}' | xargs kill -9 ;; flower) echo "stopping airflow flower" PORT=5555 PID=`netstat -nlpt | grep $PORT | awk '{print $7}' | awk -F "/" '{print $1}'` kill -9 $PID start_service ;; scheduler) echo "stopping airflow scheduler" PID=`ps -ef | grep "/usr/local/bin/airflow scheduler" | grep "python" | awk '{print $2}'` kill -9 $PID ;; *) usage exit 1 esac } main "$@"
-
问题1: airflow worker 角色不能使用根用户启动
- 原因:不能用根用户启动的根本原因,在于airflow的worker直接用的celery,而celery 源码中有参数默认不能使用ROOT启动,否则将报错, 源码链接
C_FORCE_ROOT = os.environ.get('C_FORCE_ROOT', False) ROOT_DISALLOWED = """\ Running a worker with superuser privileges when the worker accepts messages serialized with pickle is a very bad idea! If you really want to continue then you have to set the C_FORCE_ROOT environment variable (but please think about this before you do). User information: uid={uid} euid={euid} gid={gid} egid={egid} """ ROOT_DISCOURAGED = """\ You're running the worker with superuser privileges: this is absolutely not recommended! Please specify a different user using the --uid option. User information: uid={uid} euid={euid} gid={gid} egid={egid} """
- 解决方案一:修改airlfow源码,在celery_executor.py中强制设置C_FORCE_ROOT
from celery import Celery, platforms 在app = Celery(…)后新增 platforms.C_FORCE_ROOT = True 重启即可
- 解决方案二:在容器初始化环境变量的时候,设置C_FORCE_ROOT参数,以零侵入的方式解决问题
#强制celery worker运行采用root模式 export C_FORCE_ROOT=True
-
问题2: docker in docker
- 在dags中以docker方式调度任务时,为了container的轻量话,不做重型的docker pull等操作,我们利用了docker cs架构的设计理念,只需要将宿主机的/var/run/docker.sock文件挂载到容器目录下即可 docker in docker 资料
-
问题3: 由于我们运行airlfow的机器是高配机器切分的虚机,host并非是传统的ip段,多节点执行后无法在master节点上通过worker节点提供的日志服务获取执行日志
- 查看celery源码(celery/celery/worker/worker.py)
from celery.utils.nodenames import default_nodename, worker_direct self.hostname = default_nodename(hostname) // 查看default_nodename方法 def default_nodename(hostname): """Return the default nodename for this process.""" name, host = nodesplit(hostname or '') return nodename(name or NODENAME_DEFAULT, host or gethostname()) //默认在worker.py 的构造方法中没有传入hostname 所以在celery nodenames.py中default_nodename方法里面调用了gethostname //可以看到gethostname的实现,调用了socket.gethostname,这个直接得到了虚拟机的host gethostname = memoize(1, Cache=dict)(socket.gethostname)
- 解决方案:发现airflow worker的启动命令中其实提供了设置celery host name的参数
airflow worker -cn=ip@ip
-
问题4: 多个worker节点进行调度反序列化dag执行的时候,报找不到module的错误
- 当时考虑到文件更新的一致性,采用所有worker统一执行master下发的序列化dag的方案,而不依赖worker节点上实际的dag文件,开启这一特性操作如下
worker节点上: airflow worker -cn=ip@ip -p //-p为开关参数,意思是以master序列化的dag作为执行文件,而不是本地dag目录中的文件 master节点上: airflow scheduler -p
- 错误原因在于远程的worker节点上不存在实际的dag文件,反序列化的时候对于当时在dag中定义的函数或对象找不到module_name
- 解决方案一:在所有的worker节点上同时发布dags目录,缺点是dags一致性成问题
- 解决方案二:修改源码中序列化与反序列化的逻辑,主体思路还是替换掉不存在的module为main。修改如下:
//models.py 文件,对 class DagPickle(Base) 定义修改 import dill class DagPickle(Base): id = Column(Integer, primary_key=True) # 修改前: pickle = Column(PickleType(pickler=dill)) pickle = Column(LargeBinary) created_dttm = Column(UtcDateTime, default=timezone.utcnow) pickle_hash = Column(Text) __tablename__ = "dag_pickle" def __init__(self, dag): self.dag_id = dag.dag_id if hasattr(dag, 'template_env'): dag.template_env = None self.pickle_hash = hash(dag) raw = dill.dumps(dag) # 修改前: self.pickle = dag reg_str = 'unusual_prefix_\w*{0}'.format(dag.dag_id) result = re.sub(str.encode(reg_str), b'__main__', raw) self.pickle =result //cli.py 文件反序列化逻辑 run(args, dag=None) 函数 // 直接通过dill来反序列化二进制文件,而不是通过PickleType 的result_processor做中转 修改前: dag = dag_pickle.pickle 修改后:dag = dill.loads(dag_pickle.pickle)
- 解决方案三:源码零侵入,使用python的types.FunctionType重新创建一个不带module的function,这样序列化与反序列化的时候不会有问题(待验证)
new_func = types.FunctionType((lambda df: df.iloc[:, 0].size == xx).__code__, {})
-
问题5:由于airflow在master查看task执行日志是通过各个节点的http服务获取的,但是存入task_instance表中的host_name不是ip,可见获取hostname的方式有问题.
- 解决方案:修改airflow/utils/net.py 中get_hostname函数,添加优先获取环境变量中设置的hostname的逻辑
//models.py TaskInstance self.hostname = get_hostname() //net.py 在get_hostname里面加入一个获取环境变量的逻辑 import os def get_hostname(): """ Fetch the hostname using the callable from the config or using `socket.getfqdn` as a fallback. """ # 尝试获取环境变量 if 'AIRFLOW_HOST_NAME' in os.environ: return os.environ['AIRFLOW_HOST_NAME'] # First we attempt to fetch the callable path from the config. try: callable_path = conf.get('core', 'hostname_callable') except AirflowConfigException: callable_path = None # Then we handle the case when the config is missing or empty. This is the # default behavior. if not callable_path: return socket.getfqdn() # Since we have a callable path, we try to import and run it next. module_path, attr_name = callable_path.split(':') module = importlib.import_module(module_path) callable = getattr(module, attr_name) return callable()