Skip to content

Latest commit

 

History

History
1570 lines (1173 loc) · 42.9 KB

README.md

File metadata and controls

1570 lines (1173 loc) · 42.9 KB

IMPORTANT: This is the documentation for the latest SNAPSHOT version. Please refer to the website at http://getquill.io for the lastest release's documentation.

quill

Compile-time Language Integrated Query for Scala

Build Status Codacy Badge codecov.io Join the chat at https://gitter.im/getquill/quill Dependency Status Maven Central

Quill provides a Quoted Domain Specific Language (QDSL) to express queries in Scala and execute them in a target language. The library's core is designed to support multiple target languages, currently featuring specializations for Structured Query Language (SQL) and Cassandra Query Language (CQL).

example

  1. Boilerplate-free mapping: The database schema is mapped using simple case classes.
  2. Quoted DSL: Queries are defined inside a quote block. Quill parses each quoted block of code (quotation) at compile time and translates them to an internal Abstract Syntax Tree (AST)
  3. Compile-time query generation: The ctx.run call reads the quotation's AST and translates it to the target language at compile time, emitting the query string as a compilation message. As the query string is known at compile time, the runtime overhead is very low and similar to using the database driver directly.
  4. Compile-time query validation: If configured, the query is verified against the database at compile time and the compilation fails if it is not valid. The query validation does not alter the database state.

Quotation

Introduction

The QDSL allows the user to write plain Scala code, leveraging scala's syntax and type system. Quotations are created using the quote method and can contain any excerpt of code that uses supported operations. To create quotations, first create a context instance. Please see the context section for more details on the different context available.

For this documentation, a special type of context that acts as a mirror is used:

import io.getquill._

val ctx = new SqlMirrorContext[MirrorSqlDialect, Literal]

Note: Scalafiddle is a great tool to try out Quill without having to prepare a local environment. It works with mirror contexts, see this fiddle as an example.

The context instance provides all types and methods to deal quotations:

import ctx._

A quotation can be a simple value:

val pi = quote(3.14159)

And be used within another quotation:

case class Circle(radius: Float)

val areas = quote {
  query[Circle].map(c => pi * c.radius * c.radius)
}

Quotations can also contain high-order functions and inline values:

val area = quote {
  (c: Circle) => {
    val r2 = c.radius * c.radius
    pi * r2
  }
}
val areas = quote {
  query[Circle].map(c => area(c))
}

Quill's normalization engine applies reduction steps before translating the quotation to the target language. The correspondent normalized quotation for both versions of the areas query is:

val areas = quote {
  query[Circle].map(c => 3.14159 * c.radius * c.radius)
}

Scala doesn't have support for high-order functions with type parameters. Quill supports anonymous classes with an apply method for this purpose:

val existsAny = quote {
  new {
    def apply[T](xs: Query[T])(p: T => Boolean) =
    	xs.filter(p(_)).nonEmpty
  }
}

val q = quote {
  query[Circle].filter { c1 =>
    existsAny(query[Circle])(c2 => c2.radius > c1.radius)
  }
}

Compile-time quotations

Quotations are both compile-time and runtime values. Quill uses a type refinement to store the quotation's AST as an annotation available at compile-time and the q.ast method exposes the AST as runtime value.

It is important to avoid giving explicit types to quotations when possible. For instance, this quotation can't be read at compile-time as the type refinement is lost:

// Avoid type widening (Quoted[Query[Circle]]), or else the quotation will be dynamic.
val q: Quoted[Query[Circle]] = quote {
  query[Circle].filter(c => c.radius > 10)
}

ctx.run(q) // Dynamic query

Quill falls back to runtime normalization and query generation if the quotation's AST can't be read at compile-time. Please refer to dynamic queries for more information.

Inline queries

Quoting is implicit when writing a query in a run statement.

ctx.run(query[Circle].map(_.radius))
// SELECT r.radius FROM Circle r

Bindings

Quotations are designed to be self-contained, without references to runtime values outside their scope. There are two mechanisms to explicitly bind runtime values to a quotation execution.

Lifted values

A runtime value can be lifted to a quotation through the method lift:

def biggerThan(i: Float) = quote {
  query[Circle].filter(r => r.radius > lift(i))
}
ctx.run(biggerThan(10)) // SELECT r.radius FROM Circle r WHERE r.radius > ?

Lifted queries

A Traversable instance can be lifted as a Query. There are two main usages for lifted queries:

contains

def find(radiusList: List[Float]) = quote {
  query[Circle].filter(r => liftQuery(radiusList).contains(r.radius))
}
ctx.run(find(List(1.1F, 1.2F))) 
// SELECT r.radius FROM Circle r WHERE r.radius IN (?)

batch action

def insert(circles: List[Circle]) = quote {
  liftQuery(circles).foreach(c => query[Circle].insert(c))
}
ctx.run(insert(List(Circle(1.1F), Circle(1.2F)))) 
// INSERT INTO Circle (radius) VALUES (?)

Schema

The database schema is represented by case classes. By default, quill uses the class and field names as the database identifiers:

case class Circle(radius: Float)

val q = quote {
  query[Circle].filter(c => c.radius > 1)
}

ctx.run(q) // SELECT c.radius FROM Circle c WHERE c.radius > 1

Alternatively, the identifiers can be customized:

val circles = quote {
  querySchema[Circle]("circle_table", _.radius -> "radius_column")
}

val q = quote {
  circles.filter(c => c.radius > 1)
}

ctx.run(q)
// SELECT c.radius_column FROM circle_table c WHERE c.radius_column > 1

If multiple tables require custom identifiers, it is good practice to define a schema object with all table queries to be reused across multiple queries:

case class Circle(radius: Int)
case class Rectangle(length: Int, width: Int)
object schema {
  val circles = quote {
    querySchema[Circle](
        "circle_table",
        _.radius -> "radius_column")
  }
  val rectangles = quote {
    querySchema[Rectangle](
        "rectangle_table",
        _.length -> "length_column",
        _.width -> "width_column")
  }
}

Database-generated values

It is possible to make a column that is a generated by the database to be ignored during insertions and returned as a returning value.

case class Product(id: Long, description: String, sku: Long)

val q = quote {
  query[Product].insert(lift(Product(0L, "My Product", 1011L))).returning(_.id)
}

val returnedIds = ctx.run(q)
// INSERT INTO Product (description,sku) VALUES (?, ?)

Embedded case classes

Quill supports nested Embedded case classes:

case class Contact(phone: String, address: String) extends Embedded
case class Person(id: Int, name: String, contact: Contact)

ctx.run(query[Person])
// SELECT x.id, x.name, x.phone, x.address FROM Person x

Note that default naming behavior uses the name of the nested case class properties. It's possible to override this default behavior using a custom schema:

case class Contact(phone: String, address: String) extends Embedded
case class Person(id: Int, name: String, homeContact: Contact, workContact: Contact)

val q = quote {
  querySchema[Person](
    "Person",
    _.homeContact.phone   -> "homePhone",
    _.homeContact.address -> "homeAdress",
    _.workContact.phone   -> "workPhone",
    _.workContact.address -> "workAdress"
  )
}

ctx.run(q)
// SELECT x.id, x.name, x.homePhone, x.homeAdress, x.workPhone, x.workAdress FROM Person x

Queries

The overall abstraction of quill queries is use database tables as if they were in-memory collections. Scala for-comprehensions provide syntatic sugar to deal with this kind of monadic operations:

case class Person(id: Int, name: String, age: Int)
case class Contact(personId: Int, phone: String)

val q = quote {
  for {
    p <- query[Person] if(p.id == 999)
    c <- query[Contact] if(c.personId == p.id)
  } yield {
    (p.name, c.phone)
  }
}

ctx.run(q)
// SELECT p.name, c.phone FROM Person p, Contact c WHERE (p.id = 999) AND (c.personId = p.id)

Quill normalizes the quotation and translates the monadic joins to applicative joins, generating a database-friendly query that avoids nested queries.

Any of the following features can be used together with the others and/or within a for-comprehension:

filter

val q = quote {
  query[Person].filter(p => p.age > 18)
}

ctx.run(q)
// SELECT p.id, p.name, p.age FROM Person p WHERE p.age > 18

map

val q = quote {
  query[Person].map(p => p.name)
}

ctx.run(q)
// SELECT p.name FROM Person p

flatMap

val q = quote {
  query[Person].filter(p => p.age > 18).flatMap(p => query[Contact].filter(c => c.personId == p.id))
}

ctx.run(q)
// SELECT c.personId, c.phone FROM Person p, Contact c WHERE (p.age > 18) AND (c.personId = p.id)

sortBy

val q1 = quote {
  query[Person].sortBy(p => p.age)
}

ctx.run(q1)
// SELECT p.id, p.name, p.age FROM Person p ORDER BY p.age ASC NULLS FIRST

val q2 = quote {
  query[Person].sortBy(p => p.age)(Ord.descNullsLast)
}

ctx.run(q2)
// SELECT p.id, p.name, p.age FROM Person p ORDER BY p.age DESC NULLS LAST

val q3 = quote {
  query[Person].sortBy(p => (p.name, p.age))(Ord(Ord.asc, Ord.desc))
}

ctx.run(q3)
// SELECT p.id, p.name, p.age FROM Person p ORDER BY p.name ASC, p.age DESC

drop/take

val q = quote {
  query[Person].drop(2).take(1)
}

ctx.run(q)
// SELECT x.id, x.name, x.age FROM Person x LIMIT 1 OFFSET 2

groupBy

val q = quote {
  query[Person].groupBy(p => p.age).map {
    case (age, people) =>
      (age, people.size)
  }
}

ctx.run(q)
// SELECT p.age, COUNT(*) FROM Person p GROUP BY p.age

union

val q = quote {
  query[Person].filter(p => p.age > 18).union(query[Person].filter(p => p.age > 60))
}

ctx.run(q)
// SELECT x.id, x.name, x.age FROM (SELECT id, name, age FROM Person p WHERE p.age > 18
// UNION SELECT id, name, age FROM Person p1 WHERE p1.age > 60) x

unionAll/++

val q = quote {
  query[Person].filter(p => p.age > 18).unionAll(query[Person].filter(p => p.age > 60))
}

ctx.run(q)
// SELECT x.id, x.name, x.age FROM (SELECT id, name, age FROM Person p WHERE p.age > 18
// UNION ALL SELECT id, name, age FROM Person p1 WHERE p1.age > 60) x

val q2 = quote {
  query[Person].filter(p => p.age > 18) ++ query[Person].filter(p => p.age > 60)
}

ctx.run(q2)
// SELECT x.id, x.name, x.age FROM (SELECT id, name, age FROM Person p WHERE p.age > 18
// UNION ALL SELECT id, name, age FROM Person p1 WHERE p1.age > 60) x

aggregation

val r = quote {
  query[Person].map(p => p.age)
}

ctx.run(r.min) // SELECT MIN(p.age) FROM Person p
ctx.run(r.max) // SELECT MAX(p.age) FROM Person p
ctx.run(r.avg) // SELECT AVG(p.age) FROM Person p
ctx.run(r.sum) // SELECT SUM(p.age) FROM Person p
ctx.run(r.size) // SELECT COUNT(p.age) FROM Person p

isEmpty/nonEmpty

val q = quote {
  query[Person].filter{ p1 =>
    query[Person].filter(p2 => p2.id != p1.id && p2.age == p1.age).isEmpty
  }
}

ctx.run(q)
// SELECT p1.id, p1.name, p1.age FROM Person p1 WHERE
// NOT EXISTS (SELECT * FROM Person p2 WHERE (p2.id <> p1.id) AND (p2.age = p1.age))

val q2 = quote {
  query[Person].filter{ p1 =>
    query[Person].filter(p2 => p2.id != p1.id && p2.age == p1.age).nonEmpty
  }
}

ctx.run(q2)
// SELECT p1.id, p1.name, p1.age FROM Person p1 WHERE
// EXISTS (SELECT * FROM Person p2 WHERE (p2.id <> p1.id) AND (p2.age = p1.age))

contains

val q = quote {
  query[Person].filter(p => liftQuery(Set(1, 2)).contains(p.id))
}

ctx.run(q)
// SELECT p.id, p.name, p.age FROM Person p WHERE p.id IN (?, ?)

val q1 = quote { (ids: Query[Int]) =>
  query[Person].filter(p => ids.contains(p.id))
}

ctx.run(q1(liftQuery(List(1, 2))))
// SELECT p.id, p.name, p.age FROM Person p WHERE p.id IN (?, ?)

val peopleWithContacts = quote {
  query[Person].filter(p => query[Contact].filter(c => c.personId == p.id).nonEmpty)
}
val q2 = quote {
  query[Person].filter(p => peopleWithContacts.contains(p.id))
}

ctx.run(q2)
// SELECT p.id, p.name, p.age FROM Person p WHERE p.id IN (SELECT p1.* FROM Person p1 WHERE EXISTS (SELECT c.* FROM Contact c WHERE c.personId = p1.id))

distinct

val q = quote {
  query[Person].map(p => p.age).distinct
}

ctx.run(q)
// SELECT DISTINCT p.age FROM Person p

nested

val q = quote {
  query[Person].filter(p => p.name == "John").nested.map(p => p.age)
}

ctx.run(q)
// SELECT p.age FROM (SELECT p.age FROM Person p WHERE p.name = 'John') p

joins

In addition to applicative joins Quill also supports explicit joins (both inner and left/right/full outer joins).

val q = quote {
  query[Person].join(query[Contact]).on((p, c) => c.personId == p.id)
}

ctx.run(q)
// SELECT p.id, p.name, p.age, c.personId, c.phone•
// FROM Person p INNER JOIN Contact c ON c.personId = p.id

val q = quote {
  query[Person].leftJoin(query[Contact]).on((p, c) => c.personId == p.id)
}

ctx.run(q)
// SELECT p.id, p.name, p.age, c.personId, c.phone•
// FROM Person p LEFT JOIN Contact c ON c.personId = p.id

The example joins above cover the simple case. What do you do when a query requires joining more than 2 tables?

With Quill the following multi-join queries are equivalent, choose according to preference:

case class Employer(id: Int, personId: Int, name: String)

val qFlat = quote {
  for{
    (p,e) <- query[Person].join(query[Employer]).on(_.id == _.personId)
       c  <- query[Contact].leftJoin(_.personId == p.id)
  } yield(p, e, c)
}

val qNested = quote {
  for{
    ((p,e),c) <-
      query[Person].join(query[Employer]).on(_.id == _.personId)
      .leftJoin(query[Contact]).on(
        _._1.id == _.personId
      )
  } yield(p, e, c)
}

ctx.run(qFlat)
ctx.run(qNested)
// SELECT p.id, p.name, p.age, e.id, e.personId, e.name, c.id, c.phone•
// FROM Person p INNER JOIN Employer e ON p.id = e.personId LEFT JOIN Contact c ON c.personId = p.id

Query probing

Query probing validates queries against the database at compile time, failing the compilation if it is not valid. The query validation does not alter the database state.

This feature is disabled by default. To enable it, mix the QueryProbing trait to the database configuration:

lazy val ctx = new MyContext("configKey") with QueryProbing

The context must be created in a separate compilation unit in order to be loaded at compile time. Please use this guide that explains how to create a separate compilation unit for macros, that also serves to the purpose of defining a query-probing-capable context. context could be used instead of macros as the name of the separate compilation unit.

The configurations correspondent to the config key must be available at compile time. You can achieve it by adding this line to your project settings:

unmanagedClasspath in Compile += baseDirectory.value / "src" / "main" / "resources"

If your project doesn't have a standard layout, e.g. a play project, you should configure the path to point to the folder that contains your config file.

Actions

Database actions are defined using quotations as well. These actions don't have a collection-like API but rather a custom DSL to express inserts, deletes and updates.

insert

val a = quote(query[Contact].insert(lift(Contact(999, "+1510488988"))))

ctx.run(a)
// INSERT INTO Contact (personId,phone) VALUES (?, ?)

It is also possible to insert specific columns:

val a = quote {
  query[Contact].insert(_.personId -> lift(999), _.phone -> lift("+1510488988"))
}

ctx.run(a)
// INSERT INTO Contact (personId,phone) VALUES (?, ?)

batch insert

val a = quote {
  liftQuery(List(Person(0, "John", 31))).foreach(e => query[Person].insert(e))
}

ctx.run(a)
// INSERT INTO Person (id,name,age) VALUES (?, ?, ?)

update

val a = quote {
  query[Person].filter(_.id == 999).update(lift(Person(999, "John", 22)))
}

ctx.run(a)
// UPDATE Person SET id = ?, name = ?, age = ? WHERE id = 999

Using specific columns:

val a = quote {
  query[Person].filter(p => p.id == lift(999)).update(_.age -> lift(18))
}

ctx.run(a)
// UPDATE Person SET age = ? WHERE id = ?

Using columns as part of the update:

val a = quote {
  query[Person].filter(p => p.id == lift(999)).update(p => p.age -> (p.age + 1))
}

ctx.run(a)
// UPDATE Person SET age = (age + 1) WHERE id = ?

batch update

val a = quote {
  liftQuery(List(Person(1, "name", 31))).foreach { person =>
     query[Person].filter(_.id == person.id).update(_.name -> person.name, _.age -> person.age)
  }
}

ctx.run(a)
// UPDATE Person SET name = ?, age = ? WHERE id = ?

delete

val a = quote {
  query[Person].filter(p => p.name == "").delete
}

ctx.run(a)
// DELETE FROM Person WHERE name = ''

Implicit query

Quill provides implicit conversions from case class companion objects to query[T] through an additional trait:

val ctx = new SqlMirrorContext[MirrorSqlDialect, Literal] with ImplicitQuery

import ctx._

val q = quote {
  for {
    p <- Person if(p.id == 999)
    c <- Contact if(c.personId == p.id)
  } yield {
    (p.name, c.phone)
  }
}

ctx.run(q)
// SELECT p.name, c.phone FROM Person p, Contact c WHERE (p.id = 999) AND (c.personId = p.id)

Note the usage of Person and Contact instead of query[Person] and query[Contact].

SQL-specific operations

Some operations are sql-specific and not provided with the generic quotation mechanism. The sql contexts provide implicit classes for this kind of operation:

val ctx = new SqlMirrorContext[MirrorSqlDialect, Literal]
import ctx._

like

val q = quote {
  query[Person].filter(p => p.name like "%John%")
}
ctx.run(q)
// SELECT p.id, p.name, p.age FROM Person p WHERE p.name like '%John%'

Cassandra-specific operations

The cassandra context also provides a few additional operations:

val ctx = new CassandraMirrorContext
import ctx._

allowFiltering

val q = quote {
  query[Person].filter(p => p.age > 10).allowFiltering
}
ctx.run(q)
// SELECT id, name, age FROM Person WHERE age > 10 ALLOW FILTERING

ifNotExists

val q = quote {
  query[Person].insert(_.age -> 10, _.name -> "John").ifNotExists
}
ctx.run(q)
// INSERT INTO Person (age,name) VALUES (10, 'John') IF NOT EXISTS

ifExists

val q = quote {
  query[Person].filter(p => p.name == "John").delete.ifExists
}
ctx.run(q)
// DELETE FROM Person WHERE name = 'John' IF EXISTS

usingTimestamp

val q1 = quote {
  query[Person].insert(_.age -> 10, _.name -> "John").usingTimestamp(99)
}
ctx.run(q1)
// INSERT INTO Person (age,name) VALUES (10, 'John') USING TIMESTAMP 99

val q2 = quote {
  query[Person].usingTimestamp(99).update(_.age -> 10)
}
ctx.run(q2)
// UPDATE Person USING TIMESTAMP 99 SET age = 10

usingTtl

val q1 = quote {
  query[Person].insert(_.age -> 10, _.name -> "John").usingTtl(11)
}
ctx.run(q1)
// INSERT INTO Person (age,name) VALUES (10, 'John') USING TTL 11

val q2 = quote {
  query[Person].usingTtl(11).update(_.age -> 10)
}
ctx.run(q2)
// UPDATE Person USING TTL 11 SET age = 10

val q3 = quote {
  query[Person].usingTtl(11).filter(_.name == "John").delete
}
ctx.run(q3)  
// DELETE FROM Person USING TTL 11 WHERE name = 'John'

using

val q1 = quote {
  query[Person].insert(_.age -> 10, _.name -> "John").using(ts = 99, ttl = 11)
}
ctx.run(q1)
// INSERT INTO Person (age,name) VALUES (10, 'John') USING TIMESTAMP 99 AND TTL 11

val q2 = quote {
  query[Person].using(ts = 99, ttl = 11).update(_.age -> 10)
}
ctx.run(q2)
// UPDATE Person USING TIMESTAMP 99 AND TTL 11 SET age = 10

val q3 = quote {
  query[Person].using(ts = 99, ttl = 11).filter(_.name == "John").delete
}
ctx.run(q3)
// DELETE FROM Person USING TIMESTAMP 99 AND TTL 11 WHERE name = 'John'

ifCond

val q1 = quote {
  query[Person].update(_.age -> 10).ifCond(_.name == "John")
}
ctx.run(q1)
// UPDATE Person SET age = 10 IF name = 'John'

val q2 = quote {
  query[Person].filter(_.name == "John").delete.ifCond(_.age == 10)
}
ctx.run(q2)
// DELETE FROM Person WHERE name = 'John' IF age = 10

delete column

val q = quote {
  query[Person].map(p => p.age).delete
}
ctx.run(q)
// DELETE p.age FROM Person

Dynamic queries

Quill's default operation mode is compile-time, but there are queries that have their structure defined only at runtime. Quill automatically falls back to runtime normalization and query generation if the query's structure is not static. Example:

val ctx = new SqlMirrorContext[MirrorSqlDialect, Literal]

import ctx._

sealed trait QueryType
case object Minor extends QueryType
case object Senior extends QueryType

def people(t: QueryType): Quoted[Query[Person]] =
  t match {
    case Minor => quote {
      query[Person].filter(p => p.age < 18)
    }
    case Senior => quote {
      query[Person].filter(p => p.age > 65)
    }
  }

ctx.run(people(Minor))
// SELECT p.id, p.name, p.age FROM Person p WHERE p.age < 18

ctx.run(people(Senior))
// SELECT p.id, p.name, p.age FROM Person p WHERE p.age > 65

Extending quill

Infix

Infix is a very flexible mechanism to use non-supported features without having to use plain queries in the target language. It allows insertion of arbitrary strings within quotations.

For instance, quill doesn't support the FOR UPDATE SQL feature. It can still be used through infix and implicit classes:

implicit class ForUpdate[T](q: Query[T]) {
  def forUpdate = quote(infix"$q FOR UPDATE".as[Query[T]])
}

val a = quote {
  query[Person].filter(p => p.age < 18).forUpdate
}

ctx.run(a)
// SELECT p.id, p.name, p.age FROM (SELECT * FROM Person p WHERE p.age < 18 FOR UPDATE) p

The forUpdate quotation can be reused for multiple queries.

A custom database function can also be used through infix:

val myFunction = quote {
  (i: Int) => infix"MY_FUNCTION($i)".as[Int]
}

val q = quote {
  query[Person].map(p => myFunction(p.age))
}

ctx.run(q)
// SELECT MY_FUNCTION(p.age) FROM Person p

You can also use infix to port raw SQL queries to Quill and map it to regular scala tuples.

val rawQuery = quote {
  (id: Int) => infix"""SELECT id AS "_1", name AS "_2" FROM my_entity WHERE id = $id""".as[Query[(Int, String)]]
}
ctx.run(rawQuery(1))
//SELECT id AS "_1", name AS "_2" FROM my_entity WHERE id = 1

You can implement comparison operators by defining implicit conversion and using infix.

import java.util.Date

implicit class DateQuotes(left: Date) {
  def >(right: Date) = quote(infix"$left > $right".as[Boolean])

  def <(right: Date) = quote(infix"$left < $right".as[Boolean])
}

Custom encoding

Quill uses Encoders to encode query inputs and Decoders to read values returned by queries. The library provides a few built-in encodings and two mechanisms to define custom encodings: mapped encoding and raw encoding.

Mapped Encoding

If the correspondent database type is already supported, use MappedEncoding. In this example, String is already supported by Quill and the UUID encoding from/to String is defined through mapped encoding:

import ctx._
import java.util.UUID

implicit val encodeUUID = MappedEncoding[UUID, String](_.toString)
implicit val decodeUUID = MappedEncoding[String, UUID](UUID.fromString(_))

A mapped encoding also can be defined without a context instance by importing io.getquill.MappedEncoding:

import io.getquill.MappedEncoding
import java.util.UUID

implicit val encodeUUID = MappedEncoding[UUID, String](_.toString)
implicit val decodeUUID = MappedEncoding[String, UUID](UUID.fromString(_))

Raw Encoding

If the database type is not supported by Quill, it is possible to provide "raw" encoders and decoders:

trait UUIDEncodingExample {
  val jdbcContext: PostgresJdbcContext[Literal] // your context should go here

  import jdbcContext._

  implicit val uuidDecoder: Decoder[UUID] =
    decoder(java.sql.Types.OTHER, (index, row) => 
      UUID.fromString(row.getObject(index).toString)) // database-specific implementation
    
  implicit val uuidEncoder: Encoder[UUID] =
    encoder(java.sql.Types.OTHER, (index, value, row) =>
        row.setObject(index, value, java.sql.Types.OTHER)) // database-specific implementation
}

AnyVal

Quill automatically encodes AnyVals (value classes):

case class UserId(value: Int) extends AnyVal
case class User(id: UserId, name: String)

val q = quote {
  for {
    u <- query[User] if u.id == lift(UserId(1))
  } yield u
}

ctx.run(q)
// SELECT u.id, u.name FROM User u WHERE (u.id = 1)

Meta DSL

The meta DSL allows the user to customize how Quill handles the expansion and execution of quotations through implicit meta instances.

Schema meta

By default, quill expands query[Person] to querySchema[Person]("Person"). It's possible to customize this behavior using an implicit instance of SchemaMeta:

implicit val personSchemaMeta = schemaMeta[Person]("people", _.id -> "person_id")

ctx.run(query[Person])
// SELECT x.person_id, x.name, x.age FROM people x

Insert meta

InsertMeta customizes the expansion of case classes for insert actions (query[Person].insert(p)). By default, all columns are expanded and through an implicit InsertMeta, it's possible to exclude columns from the expansion:

implicit val personInsertMeta = insertMeta[Person](_.id)

ctx.run(query[Person].insert(lift(Person(-1, "John", 22))))
// INSERT INTO Person (name,age) VALUES (?, ?)

Note that the parameter of insertMeta is called exclude, but it isn't possible to use named parameters for macro invocations.

Update meta

UpdateMeta customizes the expansion of case classes for update actions (query[Person].update(p)). By default, all columns are expanded, and through an implicit UpdateMeta, it's possible to exclude columns from the expansion:

implicit val personUpdateMeta = updateMeta[Person](_.id)

ctx.run(query[Person].filter(_.id == 1).update(lift(Person(1, "John", 22))))
// UPDATE Person SET name = ?, age = ? WHERE id = 1

Note that the parameter of updateMeta is called exclude, but it isn't possible to use named parameters for macro invocations.

Query meta

This kind of meta instance customizes the expansion of query types and extraction of the final value. For instance, it's possible to use this feature to normalize values before reading them from the database:

implicit val personQueryMeta = 
  queryMeta(
    (q: Query[Person]) =>
      q.map(p => (p.id, infix"CONVERT(${p.name} USING utf8)".as[String], p.age))
  ) {
    case (id, name, age) =>
      Person(id, name, age)
  }

The query meta definition is open and allows the user to even join values from other tables before reading the final value. This kind of usage is not encouraged.

Contexts

Contexts represent the database and provide an execution interface for queries.

Mirror context

Quill provides mirror context for test purposes. Instead of running the query, mirror context return a structure with the information that would be used to run the query. There are three mirror context instances:

  • io.getquill.MirrorContext: Mirrors the quotation AST
  • io.getquill.SqlMirrorContext: Mirrors the SQL query
  • io.getquill.CassandraMirrorContext: Mirrors the CQL query

Dependent contexts

The context instance provides all methods and types to interact with quotations and the database. Depending on how the context import happens, Scala won't be able to infer that the types are compatible.

For instance, this example will not compile:

class MyContext extends SqlMirrorContext[MirrorSqlDialect, Literal]

case class MySchema(c: MyContext) {

  import c._
  val people = quote {

    querySchema[Person]("people")
  }
}

case class MyDao(c: MyContext, schema: MySchema) {

  def allPeople = 
    c.run(schema.people)
// ERROR: [T](quoted: MyDao.this.c.Quoted[MyDao.this.c.Query[T]])MyDao.this.c.QueryResult[T]
 cannot be applied to (MyDao.this.schema.c.Quoted[MyDao.this.schema.c.EntityQuery[Person]]{def quoted: io.getquill.ast.ConfiguredEntity; def ast: io.getquill.ast.ConfiguredEntity; def id1854281249(): Unit; val bindings: Object})
}

One alternative to work with this kind of context import is use traits with abstract context values:

class MyContext extends SqlMirrorContext[MirrorSqlDialect, Literal]

trait MySchema {

  val c: MyContext
  import c._

  val people = quote {
    querySchema[Person]("people")
  }
}

case class MyDao(c: MyContext) extends MySchema {
  import c._

  def allPeople = 
    c.run(people)
}

SQL Contexts

Example:

lazy val ctx = new MysqlJdbcContext[SnakeCase]("ctx")

Dialect

The SQL dialect to be used by the context is defined by the first type parameter. Some context types are specific to a database and thus not require it.

Quill has three built-in dialects:

  • io.getquill.H2Dialect
  • io.getquill.MySQLDialect
  • io.getquill.PostgresDialect
  • io.getquill.SqliteDialect

Naming strategy

The second type parameter defines the naming strategy to be used when translating identifiers (table and column names) to SQL.

strategy example
io.getquill.naming.Literal some_ident -> some_ident
io.getquill.naming.Escape some_ident -> "some_ident"
io.getquill.naming.UpperCase some_ident -> SOME_IDENT
io.getquill.naming.LowerCase SOME_IDENT -> some_ident
io.getquill.naming.SnakeCase someIdent -> some_ident
io.getquill.naming.CamelCase some_ident -> someIdent
io.getquill.naming.MysqlEscape some_ident -> `some_ident`
io.getquill.naming.PostgresEscape $some_ident -> $some_ident

Multiple transformations can be defined using mixin. For instance, the naming strategy

SnakeCase with UpperCase

produces the following transformation:

someIdent -> SOME_IDENT

The transformations are applied from left to right.

Configuration

The string passed to the context is used as the key to obtain configurations using the typesafe config library.

Additionally, the contexts provide multiple constructors. For instance, with JdbcContext it's possible to specify a DataSource directly, without using the configuration:

def createDataSource: javax.sql.DataSource with java.io.Closeable = ???

lazy val ctx = new MysqlJdbcContext[SnakeCase](createDataSource)
quill-jdbc

Quill uses HikariCP for connection pooling. Please refer to HikariCP's documentation for a detailed explanation of the available configurations.

Note that there are dataSource configurations, that go under dataSource, like user and password, but some pool settings may go under the root config, like connectionTimeout.

Transactions

The JdbcContext provides thread-local transaction support:

ctx.transaction {
  ctx.run(query[Person].delete)
  // other transactional code
}

The body of transaction can contain calls to other methods and multiple run calls, since the transaction is propagated through a thread-local.

MySQL

sbt dependencies

libraryDependencies ++= Seq(
  "mysql" % "mysql-connector-java" % "5.1.38",
  "io.getquill" %% "quill-jdbc" % "1.1.1-SNAPSHOT"
)

context definition

lazy val ctx = new MysqlJdbcContext[SnakeCase]("ctx")

application.properties

ctx.dataSourceClassName=com.mysql.jdbc.jdbc2.optional.MysqlDataSource
ctx.dataSource.url=jdbc:mysql://host/database
ctx.dataSource.user=root
ctx.dataSource.password=root
ctx.dataSource.cachePrepStmts=true
ctx.dataSource.prepStmtCacheSize=250
ctx.dataSource.prepStmtCacheSqlLimit=2048
ctx.connectionTimeout=30000

Postgres

sbt dependencies

libraryDependencies ++= Seq(
  "org.postgresql" % "postgresql" % "9.4.1208",
  "io.getquill" %% "quill-jdbc" % "1.1.1-SNAPSHOT"
)

context definition

lazy val ctx = new PostgresJdbcContext[SnakeCase]("ctx")

application.properties

ctx.dataSourceClassName=org.postgresql.ds.PGSimpleDataSource
ctx.dataSource.user=root
ctx.dataSource.password=root
ctx.dataSource.databaseName=database
ctx.dataSource.portNumber=5432
ctx.dataSource.serverName=host
ctx.connectionTimeout=30000

Sqlite

sbt dependencies

libraryDependencies ++= Seq(
  "org.xerial" % "sqlite-jdbc" % "3.8.11.2",
  "io.getquill" %% "quill-jdbc" % "1.1.1-SNAPSHOT"
)

context definition

lazy val ctx = new SqliteJdbcContext[SnakeCase]("ctx")

application.properties

ctx.driverClassName=org.sqlite.JDBC
ctx.jdbcUrl=jdbc:sqlite:/path/to/db/file.db

H2

sbt dependencies

libraryDependencies ++= Seq(
  "com.h2database" % "h2" % "1.4.192",
  "io.getquill" %% "quill-jdbc" % "1.1.1-SNAPSHOT"
)

context definition

lazy val ctx = new H2JdbcContext[SnakeCase]("ctx")

application.properties

ctx.dataSourceClassName=org.h2.jdbcx.JdbcDataSource
ctx.dataSource.url=jdbc:h2:mem:yourdbname
ctx.dataSource.user=sa
quill-async

Transactions

The async module provides transaction support based on a custom implicit execution context:

ctx.transaction { implicit ec =>
  ctx.run(query[Person].delete)
  // other transactional code
}

The body of transaction can contain calls to other methods and multiple run calls, but the transactional code must be done using the provided implicit execution context. For instance:

def deletePerson(name: String)(implicit ec: ExecutionContext) = 
  ctx.run(query[Person].filter(_.name == lift(name)).delete)

ctx.transaction { implicit ec =>
  deletePerson("John")
}

Depending on how the main execution context is imported, it is possible to produce an ambigous implicit resolution. A way to solve this problem is shadowing the multiple implicits by using the same name:

import scala.concurrent.ExecutionContext.Implicits.{ global => ec }

def deletePerson(name: String)(implicit ec: ExecutionContext) = 
  ctx.run(query[Person].filter(_.name == lift(name)).delete)

ctx.transaction { implicit ec =>
  deletePerson("John")
}

Note that the global execution context is renamed to ec.

MySQL Async

sbt dependencies

libraryDependencies ++= Seq(
  "io.getquill" %% "quill-async-mysql" % "1.1.1-SNAPSHOT"
)

context definition

lazy val ctx = new MysqlAsyncContext[SnakeCase]("ctx")

application.properties

ctx.host=host
ctx.port=3306
ctx.user=root
ctx.password=root
ctx.database=database
ctx.poolMaxQueueSize=4
ctx.poolMaxObjects=4
ctx.poolMaxIdle=999999999
ctx.poolValidationInterval=10000
ctx.sslmode=disable # optional, one of [disable|prefer|require|verify-ca|verify-full]
ctx.sslrootcert=./path/to/cert/file # optional, required for sslmode=verify-ca or verify-full

Postgres Async

sbt dependencies

libraryDependencies ++= Seq(
  "io.getquill" %% "quill-async-postgres" % "1.1.1-SNAPSHOT"
)

context definition

lazy val ctx = new PostgresAsyncContext[SnakeCase]("ctx")

application.properties

ctx.host=host
ctx.port=5432
ctx.user=root
ctx.password=root
ctx.database=database
ctx.poolMaxQueueSize=4
ctx.poolMaxObjects=4
ctx.poolMaxIdle=999999999
ctx.poolValidationInterval=10000
ctx.sslmode=disable # optional, one of [disable|prefer|require|verify-ca|verify-full]
ctx.sslrootcert=./path/to/cert/file # optional, required for sslmode=verify-ca or verify-full
quill-finagle-mysql

Transactions

The finagle context provides transaction support through a Local value. See twitter util's scaladoc for more details.

ctx.transaction {
  ctx.run(query[Person].delete)
  // other transactional code
}

The body of transaction can contain calls to other methods and multiple run calls, since the transaction is automatically propagated through the Local value.

sbt dependencies

libraryDependencies ++= Seq(
  "io.getquill" %% "quill-finagle-mysql" % "1.1.1-SNAPSHOT"
)

context definition

lazy val ctx = new FinagleMysqlContext[SnakeCase]("ctx")

application.properties

ctx.dest=localhost:3306
ctx.user=root
ctx.password=root
ctx.database=database
ctx.pool.watermark.low=0
ctx.pool.watermark.high=10
ctx.pool.idleTime=5 # seconds
ctx.pool.bufferSize=0
ctx.pool.maxWaiters=2147483647
quill-finagle-postgres

Transactions

The finagle context provides transaction support through a Local value. See twitter util's scaladoc for more details.

ctx.transaction {
  ctx.run(query[Person].delete)
  // other transactional code
}

The body of transaction can contain calls to other methods and multiple run calls, since the transaction is automatically propagated through the Local value.

sbt dependencies

libraryDependencies ++= Seq(
  "io.getquill" %% "quill-finagle-postgres" % "1.1.1-SNAPSHOT"
)

context definition

lazy val ctx = new FinaglePostgresContext[SnakeCase]("ctx")

application.properties

ctx.host=localhost:3306
ctx.user=root
ctx.password=root
ctx.database=database
ctx.useSsl=false
ctx.hostConnectionLimit=1
ctx.numRetries=4
ctx.binaryResults=false
ctx.binaryParams=false

Cassandra Contexts

sbt dependencies

libraryDependencies ++= Seq(
  "io.getquill" %% "quill-cassandra" % "1.1.1-SNAPSHOT"
)

synchronous context

lazy val ctx = new CassandraSyncContext[SnakeCase]("ctx")

asynchronous context

lazy val ctx = new CassandraAsyncContext[SnakeCase]("ctx")

stream context

lazy val ctx = new CassandraStreamContext[SnakeCase]("ctx")

The configurations are set using runtime reflection on the Cluster.builder instance. It is possible to set nested structures like queryOptions.consistencyLevel, use enum values like LOCAL_QUORUM, and set multiple parameters like in credentials.

application.properties

ctx.keyspace=quill_test
ctx.preparedStatementCacheSize=1000
ctx.session.contactPoint=127.0.0.1
ctx.session.withPort=9042
ctx.session.queryOptions.consistencyLevel=LOCAL_QUORUM
ctx.session.withoutMetrics=true
ctx.session.withoutJMXReporting=false
ctx.session.credentials.0=root
ctx.session.credentials.1=pass
ctx.session.maxSchemaAgreementWaitSeconds=1
ctx.session.addressTranslater=com.datastax.driver.core.policies.IdentityTranslater

Logging

Compile-time

To disable logging of queries during compilation use quill.macro.log option:

sbt -Dquill.macro.log=false

Additional resources

Templates

In order to quickly start with Quill, we have setup some template projects:

Slick comparison

Please refer to SLICK.md for a detailed comparison between Quill and Slick.

Cassandra libraries comparison

Please refer to CASSANDRA.md for a detailed comparison between Quill and other main alternatives for interaction with Cassandra in Scala.

External content

Talks

ScalaDays Berlin 2016 - Scylla, Charybdis, and the mystery of Quill

Blog posts

Scalac.io blog - Compile-time Queries with Quill

Tools

Code/boilerplate generator from db schema - scala-db-codegen

Code of Conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms. See CODE_OF_CONDUCT.md for details.

License

See the LICENSE file for details.

Maintainers

  • @fwbrasil
  • @godenji
  • @gustavoamigo
  • @jilen
  • @lvicentesanchez
  • @mxl

You can notify all maintainers using the handle @getquill/maintainers.

Acknowledgments

The project was created having Philip Wadler's talk "A practical theory of language-integrated query" as its initial inspiration. The development was heavily influenced by the following papers: