-
Notifications
You must be signed in to change notification settings - Fork 11
/
model.py
54 lines (42 loc) · 1.96 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import torch.nn as nn
import torchvision.models as models
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet50(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1):
super().__init__()
self.embedding_layer = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(input_size = embed_size,hidden_size = hidden_size,
num_layers = num_layers, batch_first = True)
self.linear = nn.Linear(hidden_size, vocab_size)
def forward(self, features, captions):
captions = captions[:, :-1]
embed = self.embedding_layer(captions)
embed = torch.cat((features.unsqueeze(1), embed), dim = 1)
lstm_outputs, _ = self.lstm(embed)
out = self.linear(lstm_outputs)
return out
def sample(self, inputs, states=None, max_len=20):
" accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
output_sentence = []
for i in range(max_len):
lstm_outputs, states = self.lstm(inputs, states)
lstm_outputs = lstm_outputs.squeeze(1)
out = self.linear(lstm_outputs)
last_pick = out.max(1)[1]
output_sentence.append(last_pick.item())
inputs = self.embedding_layer(last_pick).unsqueeze(1)
return output_sentence