-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathkneser_ney.py
201 lines (177 loc) · 7.3 KB
/
kneser_ney.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import math
import random
from collections import Counter, defaultdict
class KneserNeyLM:
def __init__(self, highest_order, ngrams, start_pad_symbol='<s>', end_pad_symbol='</s>'):
"""
Constructor for KneserNeyLM.
Params:
highest_order [int] The order of the language model.
ngrams [list->tuple->string] Ngrams of the highest_order specified.
Ngrams at beginning / end of sentences should be padded.
start_pad_symbol [string] The symbol used to pad the beginning of
sentences.
end_pad_symbol [string] The symbol used to pad the beginning of
sentences.
"""
self.highest_order = highest_order
self.start_pad_symbol = start_pad_symbol
self.end_pad_symbol = end_pad_symbol
self.lm = self.train(ngrams)
def train(self, ngrams):
"""
Train the language model on the given ngrams.
Params:
ngrams [list->tuple->string] Ngrams of the highest_order specified.
"""
kgram_counts = self._calc_adj_counts(Counter(ngrams))
probs = self._calc_probs(kgram_counts)
return probs
def highest_order_probs(self):
return self.lm[0]
def _calc_adj_counts(self, highest_order_counts):
"""
Calculates the adjusted counts for all ngrams up to the highest order.
Params:
highest_order_counts [dict{tuple->string, int}] Counts of the highest
order ngrams.
Returns:
kgrams_counts [list->dict] List of dict from kgram to counts
where k is in descending order from highest_order to 0.
"""
kgrams_counts = [highest_order_counts]
for i in range(1, self.highest_order):
last_order = kgrams_counts[-1]
new_order = defaultdict(int)
for ngram in last_order.keys():
suffix = ngram[1:]
new_order[suffix] += 1
kgrams_counts.append(new_order)
return kgrams_counts
def _calc_probs(self, orders):
"""
Calculates interpolated probabilities of kgrams for all orders.
"""
backoffs = []
for order in orders[:-1]:
backoff = self._calc_order_backoff_probs(order)
backoffs.append(backoff)
orders[-1] = self._calc_unigram_probs(orders[-1])
backoffs.append(defaultdict(int))
self._interpolate(orders, backoffs)
return orders
def _calc_unigram_probs(self, unigrams):
sum_vals = sum(v for v in unigrams.values())
unigrams = dict((k, math.log(v/sum_vals)) for k, v in unigrams.items())
return unigrams
def _calc_order_backoff_probs(self, order):
num_kgrams_with_count = Counter(
value for value in order.values() if value <= 4)
discounts = self._calc_discounts(num_kgrams_with_count)
prefix_sums = defaultdict(int)
backoffs = defaultdict(int)
for key in order.keys():
prefix = key[:-1]
count = order[key]
prefix_sums[prefix] += count
discount = self._get_discount(discounts, count)
order[key] -= discount
backoffs[prefix] += discount
for key in order.keys():
prefix = key[:-1]
order[key] = math.log(order[key]/prefix_sums[prefix])
for prefix in backoffs.keys():
backoffs[prefix] = math.log(backoffs[prefix]/prefix_sums[prefix])
return backoffs
def _get_discount(self, discounts, count):
if count > 3:
return discounts[3]
return discounts[count]
def _calc_discounts(self, num_with_count):
"""
Calculate the optimal discount values for kgrams with counts 1, 2, & 3+.
"""
common = num_with_count[1]/(num_with_count[1] + 2 * num_with_count[2])
# Init discounts[0] to 0 so that discounts[i] is for counts of i
discounts = [0]
for i in range(1, 4):
if num_with_count[i] == 0:
discount = 0
else:
discount = (i - (i + 1) * common
* num_with_count[i + 1] / num_with_count[i])
discounts.append(discount)
if any(d for d in discounts[1:] if d <= 0):
raise Exception(
'***Warning*** Non-positive discounts detected. '
'Your dataset is probably too small.')
return discounts
def _interpolate(self, orders, backoffs):
"""
"""
for last_order, order, backoff in zip(
reversed(orders), reversed(orders[:-1]), reversed(backoffs[:-1])):
for kgram in order.keys():
prefix, suffix = kgram[:-1], kgram[1:]
order[kgram] += last_order[suffix] + backoff[prefix]
def logprob(self, ngram):
for i, order in enumerate(self.lm):
if ngram[i:] in order:
return order[ngram[i:]]
return None
def score_sent(self, sent):
"""
Return log prob of the sentence.
Params:
sent [tuple->string] The words in the unpadded sentence.
"""
padded = (
(self.start_pad_symbol,) * (self.highest_order - 1) + sent +
(self.end_pad_symbol,))
sent_logprob = 0
for i in range(len(sent) - self.highest_order + 1):
ngram = sent[i:i+self.highest_order]
sent_logprob += self.logprob(ngram)
return sent_logprob
def generate_sentence(self, min_length=4):
"""
Generate a sentence using the probabilities in the language model.
Params:
min_length [int] The mimimum number of words in the sentence.
"""
sent = []
probs = self.highest_order_probs()
while len(sent) < min_length + self.highest_order:
sent = [self.start_pad_symbol] * (self.highest_order - 1)
# Append first to avoid case where start & end symbal are same
sent.append(self._generate_next_word(sent, probs))
while sent[-1] != self.end_pad_symbol:
sent.append(self._generate_next_word(sent, probs))
sent = ' '.join(sent[(self.highest_order - 1):-1])
return sent
def _get_context(self, sentence):
"""
Extract context to predict next word from sentence.
Params:
sentence [tuple->string] The words currently in sentence.
"""
return sentence[(len(sentence) - self.highest_order + 1):]
def _generate_next_word(self, sent, probs):
context = tuple(self._get_context(sent))
pos_ngrams = list(
(ngram, logprob) for ngram, logprob in probs.items()
if ngram[:-1] == context)
# Normalize to get conditional probability.
# Subtract max logprob from all logprobs to avoid underflow.
_, max_logprob = max(pos_ngrams, key=lambda x: x[1])
pos_ngrams = list(
(ngram, math.exp(prob - max_logprob)) for ngram, prob in pos_ngrams)
total_prob = sum(prob for ngram, prob in pos_ngrams)
pos_ngrams = list(
(ngram, prob/total_prob) for ngram, prob in pos_ngrams)
rand = random.random()
for ngram, prob in pos_ngrams:
rand -= prob
if rand < 0:
return ngram[-1]
return ngram[-1]