-
Notifications
You must be signed in to change notification settings - Fork 9
/
collision-checking.cpp
79 lines (75 loc) · 2.83 KB
/
collision-checking.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include "collision-checking.h"
#include <gsl/gsl_poly.h>
/* got this idea from
* https://www.particleincell.com/2013/cubic-line-intersection/
*/
namespace CollisionChecking {
std::vector<double> cubic_LineSegmentIntersection(const double cX[4], const double cY[4], double u_low,
double u_high, const LineSegment &ls) {
// create line given by the linesegment
// A*x + B*y + C = 0
double A = ls.y2 - ls.y1;
double B = ls.x1 - ls.x2;
double C = ls.x1*(ls.y1-ls.y2) + ls.y1*(ls.x2-ls.x1);
// the final equation to solve is given by the replacing x
// and y in the above linear equation with:
// x(u) = a0 + a1*u + a2*u^2 + a3*u^3;
// and y(u) similarly.
// coeffs for final cubic
double c[4];
c[3] = A * cX[3] + B * cY[3];
c[2] = A * cX[2] + B * cY[2];
c[1] = A * cX[1] + B * cY[1];
c[0] = A * cX[0] + B * cY[0] + C;
assert(c[3] != 0); // ensure its still cubic
// solve cubic
double u[3];
int roots = gsl_poly_solve_cubic(c[2]/c[3], c[1]/c[3], c[0]/c[3], u, u+1, u+2);
vector<double> u_result;
for (int i = 0; i < roots; i++) {
// check if within line segment
double x = cX[0] + cX[1]*u[i] + cX[2]*u[i]*u[i] + cX[3]*u[i]*u[i]*u[i];
double y = cY[0] + cY[1]*u[i] + cY[2]*u[i]*u[i] + cY[3]*u[i]*u[i]*u[i];
double s;
if (ls.x2-ls.x1 != 0) // not vertical
s = (x-ls.x1)/(ls.x2-ls.x1);
else
s = (y-ls.y1)/(ls.y2-ls.y1);
if (s < 0 || s > 1.0)
continue;
// check if within u range
if (u[i] >= u_low && u[i] <= u_high)
u_result.push_back(u[i]);
}
return u_result;
}
std::vector<Pose> cubicSpline_LineSegmentIntersection(const CubicSpline &s, const LineSegment &ls) {
// unpack the x and y splines
using namespace alglib;
real_2d_array tbly, tblx;
ae_int_t ny, nx;
alglib::spline1dunpack(s.getSplineX(), nx, tblx);
alglib::spline1dunpack(s.getSplineY(), ny, tbly);
// both should have same number of pieces
assert(nx == ny);
int n = nx;
vector<Pose> results;
for (int i = 0; i < n-1; i++) {
// confirm that u intervals are same for both x and y splines
assert(tbly[i][0] == tblx[i][0] && tbly[i][1] == tblx[i][1]);
double u_low = tbly[i][0], u_high = tbly[i][1];
double cX[4], cY[4];
for (int j = 0; j < 4; j++) {
cX[j] = tblx[i][j+2];
cY[j] = tbly[i][j+2];
}
vector<double> u = cubic_LineSegmentIntersection(cX, cY, u_low, u_high, ls);
for (int i = 0; i < u.size(); i++) {
double x = cX[0] + cX[1]*u[i] + cX[2]*u[i]*u[i] + cX[3]*u[i]*u[i]*u[i];
double y = cY[0] + cY[1]*u[i] + cY[2]*u[i]*u[i] + cY[3]*u[i]*u[i]*u[i];
results.push_back(Pose(x*fieldXConvert, y*fieldXConvert, 0));
}
}
return results;
}
}