We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hello all,
wondered if anyone has encounted the error:
TypeError: '<=' not supported between instances of 'int' and 'str'
`%%time from tensorflow.keras import backend as K from tf_keras_vis.saliency import Saliency # from tf_keras_vis.utils import normalize # Create Saliency object. saliency = Saliency(model, model_modifier=replace2linear, clone=True) # Generate saliency map saliency_map = saliency(score, X) ## Since v0.6.0, calling `normalize()` is NOT necessary. #saliency_map = normalize(saliency_map) # Render f, ax = plt.subplots(nrows=1, ncols=3, figsize=(12, 4)) for i, title in enumerate(image_titles): ax[i].set_title(title, fontsize=16) ax[i].imshow(saliency_map[i], cmap='jet') ax[i].axis('off') plt.tight_layout() plt.show() TypeError Traceback (most recent call last) <timed exec> in <module> /usr/local/lib/python3.8/dist-packages/tf_keras_vis/saliency.py in __call__(self, score, seed_input, smooth_samples, smooth_noise, keepdims, gradient_modifier, training, normalize_map, unconnected_gradients) 98 grads = [g / smooth_samples for g in total] 99 else: --> 100 grads = self._get_gradients(seed_inputs, scores, gradient_modifier, training, 101 unconnected_gradients) 102 # Visualizing /usr/local/lib/python3.8/dist-packages/tf_keras_vis/saliency.py in _get_gradients(self, seed_inputs, scores, gradient_modifier, training, unconnected_gradients) 115 outputs = self.model(seed_inputs, training=training) 116 outputs = listify(outputs) --> 117 score_values = self._calculate_scores(outputs, scores) 118 grads = tape.gradient(score_values, 119 seed_inputs, /usr/local/lib/python3.8/dist-packages/tf_keras_vis/__init__.py in _calculate_scores(self, outputs, score_functions) 86 score_values = (func(output) for output, func in zip(outputs, score_functions)) 87 score_values = (self._mean_score_value(score) for score in score_values) ---> 88 score_values = list(score_values) 89 return score_values 90 /usr/local/lib/python3.8/dist-packages/tf_keras_vis/__init__.py in <genexpr>(.0) 85 def _calculate_scores(self, outputs, score_functions): 86 score_values = (func(output) for output, func in zip(outputs, score_functions)) ---> 87 score_values = (self._mean_score_value(score) for score in score_values) 88 score_values = list(score_values) 89 return score_values /usr/local/lib/python3.8/dist-packages/tf_keras_vis/__init__.py in <genexpr>(.0) 84 85 def _calculate_scores(self, outputs, score_functions): ---> 86 score_values = (func(output) for output, func in zip(outputs, score_functions)) 87 score_values = (self._mean_score_value(score) for score in score_values) 88 score_values = list(score_values) /usr/local/lib/python3.8/dist-packages/tf_keras_vis/utils/scores.py in __call__(self, output) 99 raise ValueError("`output` ndim must be 2 or more (batch_size, ..., channels), " 100 f"but was {output.ndim}") --> 101 if output.shape[-1] <= max(self.indices): 102 raise ValueError( 103 f"Invalid index value. indices: {self.indices}, output.shape: {output.shape}") TypeError: '<=' not supported between instances of 'int' and 'str' `
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hello all,
wondered if anyone has encounted the error:
TypeError: '<=' not supported between instances of 'int' and 'str'
The text was updated successfully, but these errors were encountered: