-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
45 lines (35 loc) · 1.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import gymnasium as gym
import panda_gym
from numpngw import write_apng
from IPython.display import Image
from agents.ddpg import DDPGAgent
env = gym.make("PandaReach-v3", render_mode="rgb_array")
obs_shape = env.observation_space['observation'].shape[0] + \
env.observation_space['achieved_goal'].shape[0] + \
env.observation_space['desired_goal'].shape[0]
# Choose your trained agent : DDPG or TD3
agent = DDPGAgent(env=env, input_dims=obs_shape)
# load pre-trained networks weights
agent.load_models()
observation, info = env.reset()
# Stores frames of robot arm moving in Reacher env
images = [env.render()]
done = False
truncated = False
for i in range(200):
curr_obs, curr_achgoal, curr_desgoal = observation.values()
state = np.concatenate((curr_obs, curr_achgoal, curr_desgoal))
# Choose an action using pre-trainded RL agent
action = agent.choose_action(state)
# Excute the choosen action in the environement
new_observation, reward, done, truncated, _ = env.step(np.array(action))
images.append(env.render())
observation = new_observation
if done or truncated:
observation, info = env.reset()
images.append(env.render())
env.close()
# save frames : real-time rendering = 40 ms between frames
write_apng("anim.png", images, delay=60)
# show movements
Image(filename="anim.png")