-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmono_nat.v
58 lines (47 loc) · 2.11 KB
/
mono_nat.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
(* Edit of the Iris mono_nat to support persistent ownership. *)
From iris.algebra.lib Require Import mono_nat.
From iris.proofmode Require Import proofmode.
From iris.base_logic.lib Require Export own mono_nat.
From iris.prelude Require Import options.
Local Existing Instance mono_natG_inG.
Local Definition mono_nat_persistent_def `{!mono_natG Σ}
(γ : gname) (n : nat) : iProp Σ :=
own γ (●MN□ n).
Local Definition mono_nat_persistent_aux : seal (@mono_nat_persistent_def).
Proof. by eexists. Qed.
Definition mono_nat_persistent := mono_nat_persistent_aux.(unseal).
Local Definition mono_nat_persistent_unseal :
@mono_nat_persistent = @mono_nat_persistent_def := mono_nat_persistent_aux.(seal_eq).
Global Arguments mono_nat_persistent {Σ _} γ n.
Local Ltac unseal := rewrite
?mono_nat.mono_nat_auth_own_unseal /mono_nat.mono_nat_auth_own_def
?mono_nat.mono_nat_lb_own_unseal /mono_nat.mono_nat_lb_own_def
?mono_nat_persistent_unseal /mono_nat_persistent_def.
Section mono_nat.
Context `{!mono_natG Σ}.
Implicit Types (n m : nat).
Global Instance mono_nat_persistent_timeless γ n : Timeless (mono_nat_persistent γ n).
Proof. unseal. apply _. Qed.
Global Instance mono_nat_persistent_persistent γ n : Persistent (mono_nat_persistent γ n).
Proof. unseal. apply _. Qed.
Lemma mono_nat_persistent_lb_own_valid γ n m :
mono_nat_persistent γ n -∗ mono_nat_lb_own γ m -∗ ⌜m ≤ n⌝.
Proof.
unseal. iIntros "Hpers Hlb".
by iCombine "Hpers Hlb" gives %[_ ?]%mono_nat_both_dfrac_valid.
Qed.
Lemma mono_nat_persistent_agree γ n1 n2 :
mono_nat_persistent γ n1 -∗
mono_nat_persistent γ n2 -∗
⌜n1 = n2⌝.
Proof.
unseal. iIntros "H1 H2".
by iCombine "H1 H2" gives %[_ ?]%mono_nat_auth_dfrac_op_valid.
Qed.
Lemma mono_nat_persistent_lb_own_get γ n :
mono_nat_persistent γ n -∗ mono_nat_lb_own γ n.
Proof. unseal. iApply own_mono; apply mono_nat_included. Qed.
Lemma mono_nat_own_persist γ q n :
mono_nat_auth_own γ q n ==∗ mono_nat_persistent γ n.
Proof. unseal. iApply own_update; apply mono_nat_auth_persist. Qed.
End mono_nat.