-
Notifications
You must be signed in to change notification settings - Fork 45
/
analyze.py
292 lines (218 loc) · 9.73 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import argparse
import time
import numpy as np
import config as cfg
from metadata import grid
from utils import audio
from model import model
from utils import log
import warnings
warnings.filterwarnings('ignore')
################### DATASAT HANDLING ####################
def parseTestSet(path, file_type='wav'):
# Find all soundscape files
dataset = []
if os.path.isfile(path):
dataset.append(path)
else:
for dirpath, _, filenames in os.walk(path):
for f in filenames:
if f.rsplit('.', 1)[-1].lower() == file_type:
dataset.append(os.path.abspath(os.path.join(dirpath, f)))
# Dataset stats
log.p(('FILES IN DATASET:', len(dataset)))
return dataset
##################### LOAD MODEL #######################
def loadModel():
# Load trained net
snapshot = model.loadSnapshot('model/BirdNET_Soundscape_Model.pkl')
# Build simple model
net = model.buildNet()
# Load params
net = model.loadParams(net, snapshot['params'])
# Compile test function
test_function = model.test_function(net, layer_index=-2)
return test_function
######################### EBIRD #########################
def loadGridData():
grid.load()
def setSpeciesList(lat, lon, week):
if not week in range(1, 49):
week = -1
if cfg.USE_EBIRD_CHECKLIST:
cfg.WHITE_LIST, cfg.BLACK_LIST = grid.getSpeciesLists(lat, lon, week, cfg.EBIRD_THRESHOLD)
else:
cfg.WHITE_LIST = cfg.CLASSES
log.p(('SPECIES:', len(cfg.WHITE_LIST)), new_line=False)
###################### EXPORT ##########################
def getTimestamp(start, end):
m_s, s_s = divmod(start, 60)
h_s, m_s = divmod(m_s, 60)
start = str(h_s).zfill(2) + ":" + str(m_s).zfill(2) + ":" + str(s_s).zfill(2)
m_e, s_e = divmod(end, 60)
h_e, m_e = divmod(m_e, 60)
end = str(h_e).zfill(2) + ":" + str(m_e).zfill(2) + ":" + str(s_e).zfill(2)
return start + '-' + end
def decodeTimestamp(t):
start = t.split('-')[0].split(':')
end = t.split('-')[1].split(':')
start_seconds = float(start[0]) * 3600 + float(start[1]) * 60 + float(start[2])
end_seconds = float(end[0]) * 3600 + float(end[1]) * 60 + float(end[2])
return start_seconds, end_seconds
def getCode(label):
codes = grid.CODES
for c in codes:
if codes[c] == label:
return c
return '????'
def getRavenSelectionTable(p, path):
# Selection table
stable = ''
# Raven selection header
header = 'Selection\tView\tChannel\tBegin File\tBegin Time (s)\tEnd Time (s)\tLow Freq (Hz)\tHigh Freq (Hz)\tSpecies Code\tCommon Name\tConfidence\tRank\n'
selection_id = 0
# Write header
stable += header
# Extract valid predictions for every timestamp
for timestamp in sorted(p):
rstring = ''
start, end = decodeTimestamp(timestamp)
min_conf = 0
rank = 1
for c in p[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE + min_conf and c[0] in cfg.WHITE_LIST:
selection_id += 1
rstring += str(selection_id) + '\tSpectrogram 1\t1\t' + path + '\t'
rstring += str(start) + '\t' + str(end) + '\t' + str(cfg.SPEC_FMIN) + '\t' + str(cfg.SPEC_FMAX) + '\t'
rstring += getCode(c[0]) + '\t' + c[0].split('_')[1] + '\t' + str(c[1]) + '\t' + str(rank) + '\n'
rank += 1
if rank > 3:
break
# Write result string to file
if len(rstring) > 0:
stable += rstring
return stable, selection_id
def getAudacityLabels(p, path):
# Selection table
stext = ''
# Extract valid predictions for every timestamp
for timestamp in sorted(p):
rstring = ''
start, end = decodeTimestamp(timestamp)
min_conf = 0
for c in p[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE + min_conf and c[0] in cfg.WHITE_LIST:
rstring += str(start) + '\t' + str(end) + '\t' + c[0].split('_')[1] + ';' + str(int(c[1] * 100) / 100.0) + '\n'
# Write result string to file
if len(rstring) > 0:
stext += rstring
return stext
###################### ANALYSIS #########################
def analyzeFile(soundscape, test_function):
ncnt = 0
# Store analysis here
analysis = {}
# Keep track of timestamps
pred_start = 0
# Set species list accordingly
setSpeciesList(cfg.DEPLOYMENT_LOCATION[0], cfg.DEPLOYMENT_LOCATION[1], cfg.DEPLOYMENT_WEEK)
# Get specs for file
spec_batch = []
for spec in audio.specsFromFile(soundscape,
rate=cfg.SAMPLE_RATE,
seconds=cfg.SPEC_LENGTH,
overlap=cfg.SPEC_OVERLAP,
minlen=cfg.SPEC_MINLEN,
fmin=cfg.SPEC_FMIN,
fmax=cfg.SPEC_FMAX,
win_len=cfg.WIN_LEN,
spec_type=cfg.SPEC_TYPE,
magnitude_scale=cfg.MAGNITUDE_SCALE,
bandpass=True,
shape=(cfg.IM_SIZE[1], cfg.IM_SIZE[0]),
offset=0,
duration=None):
# Prepare as input
spec = model.prepareInput(spec)
# Add to batch
if len(spec_batch) > 0:
spec_batch = np.vstack((spec_batch, spec))
else:
spec_batch = spec
# Do we have enough specs for a prediction?
if len(spec_batch) >= cfg.SPECS_PER_PREDICTION:
# Make prediction
p, _ = model.predict(spec_batch, test_function)
# Calculate next timestamp
pred_end = pred_start + cfg.SPEC_LENGTH + ((len(spec_batch) - 1) * (cfg.SPEC_LENGTH - cfg.SPEC_OVERLAP))
# Store prediction
analysis[getTimestamp(pred_start, pred_end)] = p
# Advance to next timestamp
pred_start = pred_end - cfg.SPEC_OVERLAP
spec_batch = []
return analysis
######################## MAIN ###########################
def process(soundscape, sid, out_dir, out_type, test_function):
# Time
start = time.time()
log.p(('SID:', sid, 'PROCESSING:', soundscape.split(os.sep)[-1]), new_line=False)
# Analyze file
p = analyzeFile(soundscape, test_function)
# Generate Raven selection table + Audacity text lables
stable, dcnt = getRavenSelectionTable(p, soundscape.split(os.sep)[-1])
atext = getAudacityLabels(p, soundscape.split(os.sep)[-1])
log.p(('DETECTIONS:', dcnt), new_line=False)
# Save results
if not os.path.exists(out_dir):
os.makedirs(out_dir)
if out_type == 'raven':
with open(os.path.join(out_dir, os.path.splitext(soundscape.split(os.sep)[-1])[0] + '.BirdNET.selections.txt'), 'w') as stfile:
stfile.write(stable)
else:
with open(os.path.join(out_dir, os.path.splitext(soundscape.split(os.sep)[-1])[0] + '.BirdNET.Audacity_Labels.txt'), 'w') as stfile:
stfile.write(atext)
# Time
t = time.time() - start
# Stats
log.p(('TIME:', int(t)))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--i', default='audio', help='Path to input file or directory.')
parser.add_argument('--o', default='', help='Path to output directory. If not specified, the input directory will be used.')
parser.add_argument('--filetype', default='wav', help='Filetype of soundscape recordings. Defaults to \'wav\'.')
parser.add_argument('--results', default='raven', help='Output format of analysis results. Values in [\'audacity\', \'raven\']. Defaults to \'raven\'.')
parser.add_argument('--lat', type=float, default=-1, help='Recording location latitude. Set -1 to ignore.')
parser.add_argument('--lon', type=float, default=-1, help='Recording location longitude. Set -1 to ignore.')
parser.add_argument('--week', type=int, default=-1, help='Week of the year when the recordings were made. Values in [1, 48]. Set -1 to ignore.')
parser.add_argument('--overlap', type=float, default=0.0, help='Overlap in seconds between extracted spectrograms. Values in [0.0, 2.9].')
parser.add_argument('--spp', type=int, default=1, help='Combines probabilities of multiple spectrograms to one prediction. Defaults to 1.')
parser.add_argument('--sensitivity', type=float, default=1.0, help='Sigmoid sensitivity; Higher values result in lower sensitivity. Values in [0.25, 2.0]. Defaults to 1.0.')
parser.add_argument('--min_conf', type=float, default=0.1, help='Minimum confidence threshold. Values in [0.01, 0.99]. Defaults to 0.1.')
args = parser.parse_args()
# Parse dataset
dataset = parseTestSet(args.i, args.filetype)
if len(dataset) > 0:
# Load model
test_function = loadModel()
# Load eBird grid data
loadGridData()
# Adjust config
cfg.DEPLOYMENT_LOCATION = (args.lat, args.lon)
cfg.DEPLOYMENT_WEEK = args.week
cfg.SPEC_OVERLAP = min(2.9, max(0.0, args.overlap))
cfg.SPECS_PER_PREDICTION = max(1, args.spp)
cfg.SENSITIVITY = max(min(-0.25, args.sensitivity * -1), -2.0)
cfg.MIN_CONFIDENCE = min(0.99, max(0.01, args.min_conf))
if len(args.o) == 0:
if os.path.isfile(args.i):
result_path = args.i.rsplit(os.sep, 1)[0]
else:
result_path = args.i
else:
result_path = args.o
# Analyze dataset
for s in dataset:
process(s, dataset.index(s) + 1, result_path, args.results, test_function)
if __name__ == '__main__':
main()