This repository has been archived by the owner on Feb 21, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn.py
executable file
·61 lines (53 loc) · 2.68 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import tensorflow as tf
import numpy as np
from collections import deque
import random
learning_rate = 0.001
discount_rate = 0.95
memory_size = 1000000
batch_size = 20
exploration_max = 1.0
exploration_min = 0.01
exploration_decay = 0.995
class Agent:
def __init__(self, observation_space, action_space):
self.exploration_rate = exploration_max
self.action_space = action_space
self.memory = deque(maxlen = memory_size)
self.model = tf.keras.Sequential()
self.model.add(tf.keras.layers.Dense(24, input_shape = (observation_space,), activation = 'relu'))
self.model.add(tf.keras.layers.Dense(24,activation = 'relu'))
self.model.add(tf.keras.layers.Dense(self.action_space, activation = "linear"))
self.model.compile(loss= "mse", optimizer = tf.keras.optimizers.Adam(lr = learning_rate))
# json_file = open("models/dqn_with_er_mountain.json",'r')
# loaded_model_json = json_file.read()
# json_file.close()
# self.model = tf.keras.models.model_from_json(loaded_model_json)
# self.model.load_weights("models/dqn_with_er.h5")
# self.model.compile(loss= "mse", optimizer = tf.keras.optimizers.Adam(lr = learning_rate))
def save_to_memory(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def get_action(self, state):
if np.random.rand() < self.exploration_rate:
return random.randrange(self.action_space)
q_values = self.model.predict(state)
return np.argmax(q_values[0])
def experience_replay(self):
if len(self.memory)< batch_size:
return
batch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in batch:
q_update = reward #if done, final q value will the final reward
if not done:
q_update = reward + discount_rate*np.amax(self.model.predict(next_state)[0])
q_values = self.model.predict(state)
q_values[0][action] = q_update
self.model.fit(state, q_values, verbose = 0)
self.exploration_rate *= exploration_decay
self.exploration_rate = max(exploration_min, self.exploration_rate)
def save(self):
model_json = self.model.to_json()
with open("models/dqn_with_er.json","w") as json_file:
json_file.write(model_json)
self.model.save_weights("models/dqn_with_er.h5")
print("***************************** Model Saved ******************************")