forked from Jyxarthur/flowsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation_centroid.py
198 lines (178 loc) · 7.83 KB
/
evaluation_centroid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import cv2
import torch
import numpy as np
from PIL import Image
from torch.nn import functional as F
from argparse import ArgumentParser
from torchvision.ops.boxes import batched_nms
from scipy.optimize import linear_sum_assignment
from segment_anything.utils.amg import batched_mask_to_box, calculate_stability_score
from model.model_config import config_model
from data.dataset_config import config_eval_centroid_dataloader
from utils import iou, save_indexed, update_iousummary, hard_thres
def run_flowpsam(args, flowsam, info):
original_size = (info["size"][0][0].item(), info["size"][1][0].item())
input_size = (int(original_size[0] * 1024 / max(*original_size)), int(original_size[1] * 1024 / max(*original_size)))
with torch.no_grad():
# Inputs
original_size = (info["size"][0][0].item(), info["size"][1][0].item())
input_size = (int(original_size[0] * 1024 / max(*original_size)), int(original_size[1] * 1024 / max(*original_size)))
flow_image = info["flow_image"].cuda() # 1 4 3 1024 1024
rgb_image = info["rgb_image"].cuda() # 1 3 1024 1024
centroid_coords = info["centroid"].cuda().squeeze(0) # N 1 2
point_labels = torch.ones(centroid_coords.size()[:2], dtype=torch.int, device=centroid_coords.device)
point_prompts = (centroid_coords, point_labels)
# Inference
masks_logit, fiou, mos = flowsam(rgb_image, flow_image, point_prompts, use_cache = False)
fiou = fiou[:, args.sam_channel]
mos = mos[:, 0]
scores = fiou + mos
masks_logit = masks_logit[..., : input_size[0], : input_size[1]]
masks_logit = F.interpolate(masks_logit, original_size, mode="bilinear", align_corners=False)
masks = (masks_logit > args.mod_thres).float()
masks = masks[:, args.sam_channel]
# If gt anno is empty (i.e., centroid coords are loaded as [0,0]), we force the the predicted to be empty as well
masks = masks * (centroid_coords.mean(dim = [-2, -1]) > 0).float()[:, None, None]
masks, output_mask = hard_thres(masks, scores, output_savemask=True)
if args.save_path is not None:
save_path = os.path.join(args.save_path, info["path"][0])
os.makedirs(os.path.dirname(save_path), exist_ok = True)
save_indexed(save_path, output_mask.astype(np.uint8))
return masks
def run_flowisam(args, flowsam, info):
original_size = (info["size"][0][0].item(), info["size"][1][0].item())
input_size = (int(original_size[0] * 1024 / max(*original_size)), int(original_size[1] * 1024 / max(*original_size)))
with torch.no_grad():
# Inputs
original_size = (info["size"][0][0].item(), info["size"][1][0].item())
input_size = (int(original_size[0] * 1024 / max(*original_size)), int(original_size[1] * 1024 / max(*original_size)))
flow_image = info["flow_image"].cuda() # 1 4 3 1024 1024
centroid_coords = info["centroid"].cuda().squeeze(0) # N 1 2
point_labels = torch.ones(centroid_coords.size()[:2], dtype=torch.int, device=centroid_coords.device)
point_prompts = (centroid_coords, point_labels)
# Inference
masks_logit, fiou = flowsam(flow_image, point_prompts, use_cache = False)
fiou = fiou[:, args.sam_channel]
scores = fiou
masks_logit = masks_logit[..., : input_size[0], : input_size[1]]
masks_logit = F.interpolate(masks_logit, original_size, mode="bilinear", align_corners=False)
masks = (masks_logit > args.mod_thres).float()
masks = masks[:, args.sam_channel]
# If gt anno is empty (i.e., centroid coords are loaded as [0,0]), we force the the predicted to be empty as well
masks = masks * (centroid_coords.mean(dim = [-2, -1]) > 0).float()[:, None, None]
masks, output_mask = hard_thres(masks, scores, output_savemask=True)
if args.save_path is not None:
save_path = os.path.join(args.save_path, info["path"][0])
os.makedirs(os.path.dirname(save_path), exist_ok = True)
save_indexed(save_path, output_mask.astype(np.uint8))
return masks
def eval_centroid(args, val_loader, flowsam):
print("")
print("---Evaluation centroid steps {}".format(args.model))
flowsam.eval()
iou_summary = {}
for idx, info in enumerate(val_loader):
if idx % 100 == 0:
print("---Inference step: {}".format(idx))
# Set up performance logger
if os.path.dirname(info["path"][0]) not in iou_summary.keys():
iou_summary[os.path.dirname(info["path"][0])] = {}
for obj_idx in range(info["num_obj"].item()):
iou_summary[os.path.dirname(info["path"][0])][obj_idx] = []
# Running model
if args.model == "flowpsam":
masks = run_flowpsam(args, flowsam, info)
else: #flowisam
masks = run_flowisam(args, flowsam, info)
# Evaluating IoUs and updating
anno = info["anno"].cuda() # 1 C H W
for obj_idx in range(info["num_obj"].item()):
iou_summary[os.path.dirname(info["path"][0])][obj_idx].append(iou(masks[obj_idx], anno[0, obj_idx]).item())
obj_avg_list = []
for cat in iou_summary.keys():
for obj in iou_summary[cat].keys():
obj_avg_list.append(np.mean(np.array(iou_summary[cat][obj])))
print("---Mean centroid IoU is: {} ".format(np.mean(np.array(obj_avg_list))))
print("")
return np.mean(np.array(obj_avg_list))
if __name__ == '__main__':
parser = ArgumentParser()
#optimization
parser.add_argument('--batch_size', type=int, default=8)
# Model and ckpt information
parser.add_argument(
'--model',
type=str,
default="flowpsam",
choices = ["flowpsam", "flowisam"],
)
parser.add_argument(
'--ckpt_path',
type=str,
default=None,
help="ckpt path of flowi-sam / flowp-sam",
)
parser.add_argument(
'--rgb_encoder',
type=str,
default="vit_h",
help="size of SAM image encoder to take in rgb",
)
parser.add_argument(
'--rgb_encoder_ckpt_path',
type=str,
default="/path/to/sam_vit_h_4b8939.pth",
help="ckpt path of SAM image encoder to take in rgb, the ckpt can be downloaded from the official SAM repo (https://github.com/facebookresearch/segment-anything/)",
)
parser.add_argument(
'--flow_encoder',
type=str,
default="vit_b",
help="size of SAM image encoder to take in flow",
)
parser.add_argument(
'--flow_encoder_ckpt_path',
type=str,
default="/path/to/sam_vit_b_01ec64.pth",
help="ckpt path of SAM image encoder to take in flow, the ckpt can be downloaded from the official SAM repo (https://github.com/facebookresearch/segment-anything/)",
)
# Input configuration
parser.add_argument(
'--flow_gaps',
type=str,
default="1,-1,2,-2",
help="flow frame gaps, a string without spacing",
)
parser.add_argument(
'--dataset',
default=None,
choices=['dvs17', 'dvs17m', 'dvs16', 'ytvos'],
help="evaluation datasets",
)
# Output configuration
parser.add_argument(
'--sam_channel',
type=int,
default=0,
help="the default channel is 0 (in total four channels: 0 1 2 3)",
)
parser.add_argument(
'--mod_thres',
type=float,
default=-0.,
)
parser.add_argument(
'--save_path',
default=None,
help="path to save masks",
)
args = parser.parse_args()
# Initialising model
flowsam = config_model(args)
for param in flowsam.parameters():
param.requires_grad=False
# Initialising dataloader
val_loader = config_eval_centroid_dataloader(args)
# evaluation
eval_centroid(args, val_loader, flowsam)