forked from Jyxarthur/flowsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
254 lines (227 loc) · 10.1 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import cv2
import torch
import numpy as np
from PIL import Image
from torch.nn import functional as F
from argparse import ArgumentParser
from torchvision.ops.boxes import batched_nms
from scipy.optimize import linear_sum_assignment
from segment_anything.utils.amg import batched_mask_to_box, calculate_stability_score
from model.model_config import config_model
from data.dataset_config import config_eval_dataloader
from utils import iou, is_bg_mask, save_indexed, update_iousummary, filter_data, hard_thres
def run_flowpsam(args, flowsam, info):
with torch.no_grad():
# Inputs
original_size = (info["size"][0][0].item(), info["size"][1][0].item())
input_size = (int(original_size[0] * 1024 / max(*original_size)), int(original_size[1] * 1024 / max(*original_size)))
flow_image = info["flow_image"].cuda() # 1 4 3 1024 1024
rgb_image = info["rgb_image"].cuda() # 1 3 1024 1024
grid_coords_set = info["grid"].cuda().squeeze(0) # 100 1 2
# Inference with iterative point prompt inputs
masks_set = []
scores_set = []
flowsam.rgb_feature = None
flowsam.flow_feature = None
for coords_idx in range(grid_coords_set.shape[0] // 10):
grid_coords = grid_coords_set[coords_idx * 10 : coords_idx * 10 + 10]
point_labels = torch.ones(grid_coords.size()[:2], dtype=torch.int, device=grid_coords.device)
point_prompts = (grid_coords, point_labels)
masks_logit, fiou, mos = flowsam(rgb_image, flow_image, point_prompts, use_cache = True)
fiou = fiou[:, args.sam_channel]
mos = mos[:, 0]
score = fiou + mos
masks_logit = masks_logit[..., : input_size[0], : input_size[1]]
masks_logit = F.interpolate(masks_logit, original_size, mode="bilinear", align_corners=False)
masks = (masks_logit > args.mod_thres).float()
masks = masks[:, args.sam_channel]
masks_set.append(masks)
scores_set.append(score)
masks_set = torch.cat(masks_set, 0)
scores_set = torch.cat(scores_set, 0)
boxes_set = batched_mask_to_box(masks_set.long()).float()
return masks_set, scores_set, boxes_set
def run_flowisam(args, flowsam, info):
with torch.no_grad():
# Inputs
original_size = (info["size"][0][0].item(), info["size"][1][0].item())
input_size = (int(original_size[0] * 1024 / max(*original_size)), int(original_size[1] * 1024 / max(*original_size)))
flow_image = info["flow_image"].cuda() # 1 4 3 1024 1024
grid_coords_set = info["grid"].cuda().squeeze(0) # 100 1 2
# Inference with iterative point prompt inputs
masks_set = []
scores_set = []
flowsam.flow_feature = None
for coords_idx in range(grid_coords_set.shape[0] // 10):
grid_coords = grid_coords_set[coords_idx * 10 : coords_idx * 10 + 10]
point_labels = torch.ones(grid_coords.size()[:2], dtype=torch.int, device=grid_coords.device)
point_prompts = (grid_coords, point_labels)
masks_logit, fiou = flowsam(flow_image, point_prompts, use_cache = True)
fiou = fiou[:, args.sam_channel]
score = fiou
masks_logit = masks_logit[..., : input_size[0], : input_size[1]]
masks_logit = F.interpolate(masks_logit, original_size, mode="bilinear", align_corners=False)
masks = (masks_logit > args.mod_thres).float()
masks = masks[:, args.sam_channel]
masks_set.append(masks)
scores_set.append(score)
masks_set = torch.cat(masks_set, 0)
scores_set = torch.cat(scores_set, 0)
boxes_set = batched_mask_to_box(masks_set.long()).float()
return masks_set, scores_set, boxes_set
def eval(args, val_loader, flowsam):
print("")
print("---Evaluation steps {}".format(args.model))
flowsam.eval()
iou_summary = {}
for idx, info in enumerate(val_loader):
if idx % 100 == 0:
print("---Inference step: {}".format(idx))
# Set up performance logger
if os.path.dirname(info["path"][0]) not in iou_summary.keys() and ("num_obj" in info.keys()):
iou_summary[os.path.dirname(info["path"][0])] = {}
for obj_idx in range(info["num_obj"].item()):
iou_summary[os.path.dirname(info["path"][0])][obj_idx] = []
# Running model
if args.model == "flowpsam":
masks_set, scores_set, boxes_set = run_flowpsam(args, flowsam, info)
else: #flowisam
masks_set, scores_set, boxes_set = run_flowisam(args, flowsam, info)
"""
Post-processing
"""
if "anno" in info.keys():
anno = info["anno"].cuda() # 1 C H W
else: # No GT
anno = torch.zeros(1, 1) # empty array with anno.shape[1]=1
# NMS
keep_idx = batched_nms(boxes_set, scores_set, torch.zeros_like(boxes_set[:, 0]), iou_threshold=0.9)
masks_fil, scores_fil, boxes_fil = filter_data([masks_set, scores_set, boxes_set], keep_idx, is_idx = True)
# Removing bg masks
keep_maskidx = ~is_bg_mask(masks_fil)
masks_fil, scores_fil, boxes_fil = filter_data([masks_fil, scores_fil, boxes_fil], keep_maskidx)
# Ordering masks according to the scores
sel_idxs = torch.argsort(scores_fil, descending = True)
scores = (scores_fil[sel_idxs])[0:max(args.max_obj, anno.shape[1])]
masks_nonhung = (masks_fil[sel_idxs])[0:max(args.max_obj, anno.shape[1])]
# Overlaying masks
masks_nonhung, saved_mask_nonhung = hard_thres(masks_nonhung, scores, output_savemask = True)
# Padding masks to match with num_obj
if masks_nonhung.shape[0] < max(args.max_obj, anno.shape[1]):
masks_nonhung_pad = torch.repeat_interleave(torch.zeros_like(masks_nonhung[0:1], device = masks_nonhung.device), max(args.max_obj, anno.shape[1]) - masks_nonhung.shape[0], 0)
masks_nonhung = torch.cat([masks_nonhung, masks_nonhung_pad], 0)
scores_pad = torch.zeros(max(args.max_obj, anno.shape[1]) - masks_nonhung.shape[0]).cuda()
scores = torch.cat([scores, scores_pad], 0)
if "anno" in info.keys():
# Hungarian matching and result summary
result_iou = iou(anno[0, :, None], masks_nonhung[None])
orig_idx, hung_idx = linear_sum_assignment(-result_iou.cpu().detach().numpy())
masks_hung = masks_nonhung[hung_idx] # Hungarian matched masks
iou_summary = update_iousummary(masks_hung, masks_nonhung, anno, info["num_obj"].item(), info["path"], iou_summary, save_path = args.save_path)
else: # No GT
if args.save_path:
save_path_nonhung = os.path.join(args.save_path, "nonhung")
os.makedirs(os.path.dirname(os.path.join(save_path_nonhung, info["path"][0])), exist_ok = True)
save_indexed(os.path.join(save_path_nonhung, info["path"][0]), saved_mask_nonhung.astype(np.uint8))
if len(iou_summary.keys()) != 0:
# IoU result output
iou_list = []
for cat in iou_summary.keys():
for obj in iou_summary[cat].keys():
iou_list.append(np.mean(np.array(iou_summary[cat][obj])))
print("---Mean IoU is: {} ".format(np.mean(np.array(iou_list))))
print("")
return np.mean(np.array(iou_list))
if __name__ == '__main__':
parser = ArgumentParser()
#optimization
parser.add_argument('--batch_size', type=int, default=8)
# Model and ckpt information
parser.add_argument(
'--model',
type=str,
default="flowpsam",
choices = ["flowpsam", "flowisam"],
)
parser.add_argument(
'--ckpt_path',
type=str,
default=None,
help="ckpt path of flowi-sam / flowp-sam",
)
parser.add_argument(
'--rgb_encoder',
type=str,
default="vit_h",
help="size of SAM image encoder to take in rgb",
)
parser.add_argument(
'--rgb_encoder_ckpt_path',
type=str,
default="/path/to/sam_vit_h_4b8939.pth",
help="ckpt path of SAM image encoder to take in rgb, the ckpt can be downloaded from the official SAM repo (https://github.com/facebookresearch/segment-anything/)",
)
parser.add_argument(
'--flow_encoder',
type=str,
default="vit_b",
help="size of SAM image encoder to take in flow",
)
parser.add_argument(
'--flow_encoder_ckpt_path',
type=str,
default="/path/to/sam_vit_b_01ec64.pth",
help="ckpt path of SAM image encoder to take in flow, the ckpt can be downloaded from the official SAM repo (https://github.com/facebookresearch/segment-anything/)",
)
# Input configuration
parser.add_argument(
'--flow_gaps',
type=str,
default="1,-1,2,-2",
help="flow frame gaps, a string without spacing",
)
parser.add_argument(
'--num_gridside',
type=int,
default=10,
help="total number of uniform grid point prompts = num_gridside ** 2",
)
parser.add_argument(
'--dataset',
default=None,
choices=['dvs17', 'dvs17m', 'dvs16', 'ytvos', 'example'],
help="evaluation datasets",
)
# Output configuration
parser.add_argument(
'--max_obj',
type=int,
default=5,
help="max number of objects output",
)
parser.add_argument(
'--sam_channel',
type=int,
default=0,
help="the default channel is 0 (in total four channels: 0 1 2 3)",
)
parser.add_argument(
'--mod_thres',
type=float,
default=-0.,
)
parser.add_argument(
'--save_path',
default=None,
help="path to save masks",
)
args = parser.parse_args()
# Initialising model
flowsam = config_model(args)
for param in flowsam.parameters():
param.requires_grad=False
# Initialising dataloader
val_loader = config_eval_dataloader(args)
# evaluation
eval(args, val_loader, flowsam)