forked from Niketkumardheeryan/ML-CaPsule
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebapp.py
174 lines (128 loc) · 4.44 KB
/
webapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from telnetlib import BM
import streamlit as st
import numpy as np
from numpy import array
from matplotlib import pyplot as plt
import pandas as pd
data = pd.read_csv("diabetes.csv")
st.title("Diabetes predictor")
nav = st.sidebar.radio("Navigation",["Home","Prediction"])
if nav == "Home":
st.write("Home")
st.image("diab.jpg",width=800)
if st.checkbox("Show table"):
st.table(data.sample(10))
graph = st.selectbox("Would you like to see a graph",["No","Yes"])
if graph == "Yes":
plt.figure(figsize=(10,5))
plt.scatter(data["BMI"],data["Diabetes_binary"])
plt.ylim(0)
plt.xlabel("BMI")
plt.ylabel("Diabetes")
plt.tight_layout()
st.set_option('deprecation.showPyplotGlobalUse', False)
st.pyplot()
plt.pcolormesh( data.sample(20) , cmap = 'winter' )
plt.title( '2-D Heat Map' )
plt.show()
st.pyplot()
if graph == "Interactive":
pass
def sigmoid(z):
'''Compute sigmoid function'''
sig = 1/(1+np.exp(-z))
return sig
def predict(w,b,x_test):
m = x_test.shape[1]
y_prediction = np.zeros((1,m))
w = w.reshape(x_test.shape[0],1)
A = sigmoid(np.dot(w.T,x_test)+b)
for i in range(A.shape[1]):
if A[0,i]>=0.75:
y_prediction[0,i]=1
else:
y_prediction[0,i]=0
return y_prediction
f1 = open("model_parameters.txt","r")
para = f1.read()
parameters = eval(para)
w =parameters["w"]
b = parameters["b"]
if nav =="Prediction":
st.subheader("Predict")
HighBP = st.selectbox("Do you have high BP?",["Yes","No"])
if HighBP=="Yes":
HighBP = 1
else:
HighBP=0
HighChol = st.selectbox("Do you have high cholestrol",["Yes","No"])
if HighChol=="Yes":
HighChol = 1
else:
HighChol=0
Cholcheck = st.selectbox("Have you had a cholestrol check in the last five years",['Yes','No'])
if Cholcheck=="Yes":
Cholcheck = 1
else:
Cholcheck=0
BMI = st.number_input("Enter your BMI", 0,50)
smoke = st.selectbox("Do you smoke",["Yes",'No'])
if smoke=="Yes":
smoke = 1
else:
smoke=0
stroke = st.selectbox("Ever had a stroke",['Yes',"No"])
if stroke=="Yes":
stroke = 1
else:
stroke=0
HrDis = st.selectbox("Had a heart attack or suffer from heart conditions",["Yes",'No'])
if HrDis=="Yes":
HrDis = 1
else:
HrDis=0
Physact = st.selectbox("Do you get regular exercise in the last 30 days",['Yes','No'])
if Physact=="Yes":
Physact = 1
else:
Physact=0
Fruits = st.selectbox("Do you have one or more fruits in a day",['Yes','No'])
if Fruits=="Yes":
Fruits = 1
else:
Fruits=0
Veggies = st.selectbox("Do you have one or more vegetables in a day",['Yes','No'])
if Veggies=="Yes":
Veggies= 1
else:
Veggies=0
Alc = st.selectbox("Do you consume more than 14 drinks in a week (for men) and 7 drinks a week(for women)",["Yes","no"])
if Alc=="Yes":
Alc = 1
else:
Alc=0
AnyHealthcare = st.selectbox("Do you have health care access",['Yes',"No"])
if AnyHealthcare=="Yes":
AnyHealthcare = 1
else:
AnyHealthcare=0
NoDoc = st.selectbox("Was there a time in the past 12 months you could not see a doctor due to the costs",["Yes","No"])
if NoDoc=="Yes":
NoDoc = 1
else:
NoDoc=0
Genhealth = st.number_input("How is your general health? (1- excellent....5-poor)",1,5)
MentalHealth = st.number_input("How many bad mental health days in the last 30 days",0,30)
PhysHlth = st.number_input("How many times have you had a physical injury in the last 30 days",0,30)
diffstairs = st.selectbox("Do you have serious difficulty in climbing stairs",['Yes','No'])
if diffstairs=="Yes":
diffstairs = 1
else:
diffstairs=0
pred_data = np.array([HighBP,HighChol,Cholcheck, BMI,smoke,stroke,HrDis,Physact,Fruits,Veggies,Alc,AnyHealthcare,NoDoc,Genhealth,MentalHealth,PhysHlth,diffstairs])
pred_data= (pred_data- np.mean(pred_data)) / np.std(pred_data)
pred_data = pred_data.reshape(pred_data.shape[0],1)
y_prediction = predict(w,b,pred_data)
diabetes = {1:'Chances of having diabetes is high',0:"You have low chances having diabetes"}
if st.button("Predict"):
st.success(diabetes[y_prediction[0][0]])