forked from Niketkumardheeryan/ML-CaPsule
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_model.py
24 lines (18 loc) · 872 Bytes
/
my_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import keras
from keras.layers import Activation
from keras.layers import Conv2D, BatchNormalization, Dense, Flatten, Reshape
# Neural network for solving games
def get_my_model():
my_model = keras.models.Sequential()
# using three convolutional layers
my_model.add(Conv2D(64, kernel_size=(3,3), activation='relu', padding='same', input_shape=(9,9,1)))
my_model.add(BatchNormalization())
my_model.add(Conv2D(64, kernel_size=(3,3), activation='relu', padding='same'))
my_model.add(BatchNormalization())
my_model.add(Conv2D(128, kernel_size=(1,1), activation='relu', padding='same'))
#using one dense layer for classification and softmax layer for taking the maximum probability
my_model.add(Flatten())
my_model.add(Dense(81*9))
my_model.add(Reshape((-1, 9)))
my_model.add(Activation('softmax'))
return my_model