forked from Niketkumardheeryan/ML-CaPsule
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblending.py
95 lines (72 loc) · 3.56 KB
/
blending.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
class Ensemble:
def __init__(self):
self.x_train = None
self.x_test = None
self.y_train = None
self.y_test = None
def load_data(self):
x, y = load_breast_cancer(return_X_y=True)
self.x_train, self.x_test, self.y_train, self.y_test = train_test_split(x, y, test_size=0.15, random_state=23)
self.x_train, self.x_val, self.y_train, self.y_val = train_test_split(self.x_train, self.y_train, test_size=0.3, random_state=23)
def BlendingClassifier(self):
# Define weak learners
weak_learners = [('dt', DecisionTreeClassifier()),
('knn', KNeighborsClassifier()),
('rf', RandomForestClassifier()),
('gb', GradientBoostingClassifier()),
('gn', GaussianNB())]
# Finaler learner or meta model
final_learner = LogisticRegression()
train_meta_model = None
test_meta_model = None
# Start stacking
for clf_id, clf in weak_learners:
# Predictions for each classifier based on k-fold
val_predictions, test_predictions = self.train_level_0(clf)
# Stack predictions which will form
# the inputa data for the data model
if isinstance(train_meta_model, np.ndarray):
train_meta_model = np.vstack((train_meta_model, val_predictions))
else:
train_meta_model = val_predictions
# Stack predictions from test set
# which will form test data for meta model
if isinstance(test_meta_model, np.ndarray):
test_meta_model = np.vstack((test_meta_model, test_predictions))
else:
test_meta_model = test_predictions
# Transpose train_meta_model
train_meta_model = train_meta_model.T
# Transpose test_meta_model
test_meta_model = test_meta_model.T
# Training level 1
self.train_level_1(final_learner, train_meta_model, test_meta_model)
def train_level_0(self, clf):
# Train with base x_train
clf.fit(self.x_train, self.y_train)
# Generate predictions for the holdout set (validation)
# These predictions will build the input for the meta model
val_predictions = clf.predict(self.x_val)
# Generate predictions for original test set
# These predictions will be used to test the meta model
test_predictions = clf.predict(self.x_test)
return val_predictions, test_predictions
def train_level_1(self, final_learner, train_meta_model, test_meta_model):
# Train is carried out with final learner or meta model
final_learner.fit(train_meta_model, self.y_val)
# Getting train and test accuracies from meta_model
print(f"Train accuracy: {final_learner.score(train_meta_model, self.y_val)}")
print(f"Test accuracy: {final_learner.score(test_meta_model, self.y_test)}")
if __name__ == "__main__":
ensemble = Ensemble()
ensemble.load_data()
ensemble.BlendingClassifier()