-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path101.symmetric-tree.py
71 lines (47 loc) · 1.39 KB
/
101.symmetric-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from lc import *
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
s = [(root.left, root.right)]
while s:
a,b = s.pop()
if a and b and a.val==b.val:
s += [(a.left,b.right),(a.right,b.left)]
else:
return not (a or b)
return True
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
def mirror(a,b):
if a and b:
return a.val==b.val and mirror(a.left,b.right) and mirror(a.right,b.left)
return not a and not b
return mirror(root.left,root.right) if root else True
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
return root and (f:=lambda a,b:a.val==b.val and f(a.left,b.right) and f(a.right,b.left) if a and b else not(a or b))(root.left,root.right)
test('''
101. Symmetric Tree
Easy
12396
280
Add to List
Share
Given the root of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).
Example 1:
Input: root = [1,2,2,3,4,4,3]
Output: true
Example 2:
Input: root = [1,2,2,null,3,null,3]
Output: false
Example 2:
Input: root = [1,2,3]
Output: false
Constraints:
The number of nodes in the tree is in the range [1, 1000].
-100 <= Node.val <= 100
Follow up: Could you solve it both recursively and iteratively?
Accepted
1,532,743
Submissions
2,862,296
''')