The Python package enables users to download, visualize, and analyze
AFT HDF (h5) data seamlessly. AFTPy
offers a comprehensive solution for
analyzing and downloading Advective Flux Transport (AFT) data,
streamlining the process of data downloading in parallel and
also facilitating the conversion of H5 files into the most popular
FITS file format or various other formats with ease.
pip install aftpy
git clone [email protected]:bibhuraushan/aftpy.git
cd aftpy
python setup.py install
aftpy
provides two importent python module named aftmap
and aftgetdata
. These modules can be used
to read the single aftmap file or load all the files from a given directory.
aftmap
modules also provides two python class AFTmap
and AFTload
. The AFTmap
class
provide an interface to read the singale H5 AFTmap file and provide you the functions and isntances
to get the information and plot the data. The other class AFTload
provides the interface to load
all the data from a directory and provide the instances and function to know about the loaded data. It also
provides a function to convert all the loaded data in to popular FITS file.
A class for loading all AFT maps from directory.
path
(str): The path to the directory containing AFT map files.filetype
(str): The file extension of the AFT map files (e.g., "h5").date_fmt
(str): The date format string used to parse timestamps from filenames.filelist
(list): A list of file paths to AFT map files in the specified directory.filenames
(numpy.ndarray): An array of filenames extracted from the filelist.
convert_all(convert_to="fits", outpath=".", verbose=True)
Convert all loaded AFT map files to the specified format.convert_to
(str, optional): The output format to convert the AFT map files to. Defaults to "fits".outpath
(str, optional): The directory path to save the converted files. Defaults to current directory.verbose
(bool, optional): Whether to print conversion progress. Defaults to True.
import aftpy.aftmap as aft
# Initialize AFTload object
loader = aft.AFTload(path="/path/to/aft/maps", filetype="h5")
# Convert all AFT map files to FITS format to '/path/to/converted/maps'
loader.convert_all(convert_to="fits", outpath="/path/to/converted/maps", verbose=True)
A class for downloading AFT map files from a specified URL.
ncpu
(int): Number of CPU cores to utilize for downloading files. Defaults tocpu_count() - 1
.dt
(module): Alias for thedatetime
module.root_url
(str): The root URL from where AFT map files will be downloaded. Defaults to "https://data.boulder.swri.edu/lisa/".urls
(list): List of URLs of AFT map files.datafile
(str): File path to store the list of files in CSV format.datalist
(DataFrame): DataFrame containing the list of files and corresponding timestamps.
-
get_list(t0=None, t1=None, dt=1) -> data (DataFrame)
t0
(datetime.datetime, optional): Start time of the time range. Defaults to None.t1
(datetime.datetime, optional): End time of the time range. Defaults to None.dt
(int, optional): Time interval for sampling files within the time range. Defaults to 1.Returns
data (DataFrame): DataFrame containing the list of files within the specified time range.
-
reload_files(url=None, filetype="h5")
Reload the list of AFT map files from the root URL.url
(str, optional): The URL to reload the list of files from. Defaults to None.filetype
(str, optional): The file extension of AFT map files. Defaults to "h5".Returns
: True if the list of files is successfully reloaded.
-
download(dataframe, rootpath=None, ncpu=None)
Download AFT map files listed in the DataFrame.dataframe
(DataFrame): DataFrame containing the list of files to download.rootpath
(str, optional): Root directory path to save the downloaded files. Defaults to None.ncpu
(int, optional): Number of CPU cores to utilize for downloading files. Defaults tocpu_count() - 1
.
import aftpy.getaftdata as aftget
# Initialize AFTdownload object
downloader = aftget.AFTdownload()
# Reload the list of AFT map files
downloader.reload_files()
# Get the list of AFT map files within a specified time range
file_list = downloader.get_list(t0=dt.datetime(2023, 1, 1), t1=dt.datetime(2023, 1, 7))
# Download AFT map files listed in the DataFrame
downloader.download(file_list)