-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
268 lines (201 loc) · 8.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from IPython.display import Image
import pandas as pd
import numpy as np
import datetime
import warnings
import pathlib
import pygwalker as pyg
import dtale
import dtale.app as dtale_app
from IPython.display import Image
import datetime
import warnings
import pathlib
import matplotlib as mpl
import matplotlib.pyplot as plt
warnings.simplefilter(action='ignore', category=FutureWarning)
# company = "sportGmbH"
company = "bankZweiAG"
def load_data(comp):
d_employees = pd.read_csv('./data/' + comp + '/employees_' + comp + '.csv', sep=',')
d_tasks = pd.read_csv('./data/' + comp + '/tasks_' + comp + '.csv', sep=',')
d_employee_input = pd.read_csv('./data/' + comp + '/employee_input_' + comp + '.csv', sep=',')
return d_employees, d_tasks, d_employee_input
# calculate diff between today and the start date at the company
def tenure(start_date):
date_now = datetime.datetime.utcnow()
date_diff = int((date_now - start_date).days)
return date_diff
def ho_prob(days):
if days < 180:
home_office_prob = 0
else:
home_office_prob = 100
return home_office_prob
# calculate the home office level based on the age (gen-preference)
def ho_generation(year):
if 1946 <= year <= 1964:
return 48
elif 1965 <= year <= 1980:
return 50
elif 1981 <= year <= 1994:
return 44
else:
return 28
# calculate the home office level based on the education
def ho_degree(abschluss):
if abschluss == 'Hochschule':
return 48
elif abschluss == 'mittlere Reife':
return 17
else:
return 8
# calculate the home office level based on the commute time
def ho_commute(time):
if time > 40:
return 46
elif 20 <= time <= 40:
return 2.3 * time - 46 # linear decline
else:
return 0
# calculate the home office proportion based on caring responsibility
def ho_gender_resp(employees):
if employees['Caring Responsibility'] and employees['Gender'] == 'female':
return 56.1
elif employees['Caring Responsibility'] and employees['Gender'] == 'male':
return 52
else:
return 50
# calculate the preferred proportion of home office
def ho_prefer(employee_input):
if employee_input['ho_wish']:
return (employee_input['desired_days'] / 5) * 100
else:
return 0
# calculate derivations
def deviation(ho_shares):
ho_shares['difference_to_max'] = int(ho_shares['ho_max'] - ho_shares['ho_prefer'])
ho_shares['difference_to_opt'] = int(ho_shares['ho_opt'] - ho_shares['ho_prefer'])
ho_shares['difference_to_social'] = int(ho_shares['ho_social'] - ho_shares['ho_prefer'])
return ho_shares
# calculate the preferred proportion of home office based on personality traits
# see Kawakubo, S., & Arata, S. (2022). Study on residential environment and workers’ personality traits on productivity while working from home. Building and Environment, 212, 108787.
def ho_personality_openness(employee_input):
if 2 <= employee_input['openness'] <= 8:
return 1.2
else:
return 6.1
def ho_personality_neuroticism(employee_input):
if 2 <= employee_input['neuroticism'] <= 7:
return 6.3
else:
return 2.2
def ho_personality_perseverance_and_passion(employee_input):
if 1 <= employee_input['perseverance_and_grit'] <= 3:
return 1.7
else:
return 6.5
# the other three factors are not significant, therefore, we currently avoid these
# Conscientiousness
# Extraversion
# Agreeableness
# we calculate the percentage based on the single value
def ho_personality__complete(employee_input):
return ((ho_personality_openness(employee_input) + ho_personality_neuroticism(
employee_input) + ho_personality_perseverance_and_passion(employee_input)) / (6.1 + 6.3 + 6.5)) * 100
employees, tasks, employee_input = load_data(company)
# make sure everything is numeric
tasks.loc[:, "T01":"Q42"] = tasks.loc[:, "T01":"Q42"].apply(pd.to_numeric)
employee_input[["desired_days", "Commute", "openness", "neuroticism", "perseverance_and_grit"]] = employee_input[
["desired_days", "Commute", "openness", "neuroticism", "perseverance_and_grit"]].apply(pd.to_numeric)
# make everything in these two columns to a boolean value
employee_input[["ho_wish", "Caring Responsibility"]] = employee_input[["ho_wish", "Caring Responsibility"]].replace(
{'True': True, 'False': False})
employee_input[["ho_wish", "Caring Responsibility"]] = employee_input[["ho_wish", "Caring Responsibility"]].where(
employee_input[["ho_wish", "Caring Responsibility"]].applymap(type) == bool)
# %%
# -------------------------
# Employer's point of view
# -------------------------
# take sum of tasks
# 3.2.1 The Teleworkability-Index
ho_tasks = tasks['T09'] + tasks['T10'] + tasks['T11'] + tasks['T12'] + tasks['T13'] + tasks['T14'] + tasks['T15'] + \
tasks['T16']
# add new column to df
tasks['ho_max'] = ho_tasks
# 3.2.2 Infrastructure.
tasks.loc[tasks.it == False, ['ho_max']] = 0
# 3.2.3 Sense of Belonging to Company.
employees['Entry date'] = pd.to_datetime(employees['Entry date'])
employees['Company affiliation duration'] = employees['Entry date'].apply(tenure)
employees['ho_prob'] = employees['Company affiliation duration'].apply(ho_prob)
tasks = pd.merge(tasks, employees[['Activity', 'ho_prob']], on='Activity', how='left')
tasks.loc[tasks.ho_prob == 0, ['ho_max']] = 0
# calculate the mean
ho_max_total = int((int(tasks['ho_max'].sum())) / len(tasks.index))
# results after first 3 steps (mean)
print(
'The maximum proportion of home office at the company after the first three points is: ' + str(ho_max_total) + '%.')
# 3.2.4 Task-Media-Fit Model
grouptasks_ho = tasks['Q01'] + tasks['Q02'] + tasks['Q42']
grouptasks_office = tasks['Q03'] + tasks['Q41']
tasks['grouptasks_ho'] = grouptasks_ho
tasks['grouptasks_office'] = grouptasks_office
tasks[['Activity', 'grouptasks_ho', 'grouptasks_office']]
opt_tasks = tasks['ho_max'] - tasks['grouptasks_office']
tasks['ho_opt'] = opt_tasks
# correct if mox amount of home office was already zero:
tasks.loc[tasks.ho_opt <= 0, ['ho_opt']] = 0
# calculate the mean
ho_opt_total = int((int(tasks['ho_opt'].sum())) / len(tasks.index))
print('The optimal amount of home office based on the media fit model is: ' + str(ho_opt_total) + '%.')
# %%
# -------------------------
# Social factors
# -------------------------
# 3.3.1 Different generations
employees['Birth date'] = pd.to_datetime(employees['Birth date'])
employees['birth_year'] = employees['Birth date'].dt.year
employees['ho_generation'] = employees['birth_year'].apply(ho_generation)
# 3.3.2 Education.
employees['ho_degree'] = employees['Degree'].apply(ho_degree)
# 3.3.3 Commute time
employees['ho_commute'] = employee_input['Commute'].apply(ho_commute)
# 3.3.4 Caring Responsibility
employees = employees.join(employee_input['Caring Responsibility'])
employees['ho_responsibility'] = employees.apply(ho_gender_resp, axis=1)
# 3.3.5 Personality factors
employees = employees.join(employee_input['openness'])
employees = employees.join(employee_input['neuroticism'])
employees = employees.join(employee_input['perseverance_and_grit'])
employees['personality_factor'] = employees.apply(ho_personality__complete, axis=1)
# Social factors subset
employees_subset = employees[['ho_generation', 'ho_degree', 'ho_commute', 'ho_responsibility', 'personality_factor']]
# calculate the mean
average_value_ho = np.average(employees_subset, axis=1)
employees_subset['ho_social'] = average_value_ho
ho_social_total = round((int(employees_subset['ho_social'].sum()) / len(employees.index)), 2)
print('The optimal proportion of home office based on the social factors is: ' + str(ho_social_total) + '%.')
# %%
# -------------------------
# Employee Requests
# -------------------------
# 3.4 Employee Requests
employee_input['ho_prefer'] = employee_input.apply(ho_prefer, axis=1)
# calculate the mean
ho_prefer_total = round((int(employee_input['ho_prefer'].sum()) / len(employee_input.index)), 2)
print('The mean of the employees wishes for home office is: ' + str(ho_prefer_total) + '%.')
# %%
# -------------------------
# Difference Between the Calculated proportion of Home Office and Preference
# -------------------------
employees = employees.join(employee_input['ho_prefer'])
employees = employees.join(employees_subset['ho_social'])
employees = pd.merge(employees, tasks[['Activity', 'ho_max']], on='Activity', how='left')
employees = pd.merge(employees, tasks[['Activity', 'ho_opt']], on='Activity', how='left')
ho_shares = employees[['Personal number', 'Activity', 'Employee', 'ho_social', 'ho_opt', 'ho_max', 'ho_prefer']]
ho_shares = ho_shares.drop_duplicates()
employees = employees.drop_duplicates()
ho_shares = ho_shares.apply(deviation, axis=1)
pathlib.Path('results/').mkdir(parents=True, exist_ok=True)
ho_shares.to_csv('results/results_' + company + '.csv', index=False)