-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathgenerate.lua
117 lines (105 loc) · 3.76 KB
/
generate.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
require 'nn'
require 'torch'
require 'xlua'
require 'KLDPenalty'
require 'Sampler'
assert(pcall(function () mat = require('fb.mattorch') end) or pcall(function() mat = require('matio') end), 'no mat IO interface available')
cmd = torch.CmdLine()
cmd:option('-gpu', 0, 'GPU id, starting from 1. Set it to 0 to run it in CPU mode. ')
cmd:option('-sample', false, 'whether to sample input latent vectors from an i.i.d. uniform distribution, or to generate shapes with demo vectors')
cmd:option('-zsample', 'uniform1', 'sample z Uniform[0,1] (uniform1), Uniform[-1,1] (uniform2), Normal(0,1) (normal)')
cmd:option('-bs', 100, 'batch size')
cmd:option('-ss', 100, 'number of generated shapes, only used in `-sample` mode')
cmd:option('-ck', 25, 'Checkpoint to start from (default is 25)')
cmd:option('-ckp','checkpoints_32table80', 'the name of the checkpoint folder')
cmd:option('-nc', 0, 'the number of categories (default is 0 for non conditional model)')
cmd:option('-cat', 0, 'the category to specify (not necessary if nc = 0)')
opt = cmd:parse(arg or {})
if opt.gpu > 0 then
require 'cunn'
require 'cudnn'
require 'cutorch'
cutorch.setDevice(opt.gpu)
nn.DataParallelTable.deserializeNGPUs = 1
end
checkpoint_path = '/data/jjliu/checkpoints/' .. opt.ckp
print(checkpoint_path)
print('Loading network..')
gen_path = paths.concat(checkpoint_path, 'shapenet101_' .. opt.ck .. '_net_G.t7')
disc_path = paths.concat(checkpoint_path, 'shapenet101_' .. opt.ck .. '_net_D.t7') -- for retrieving meta info
netG = torch.load(gen_path)
netD = torch.load(disc_path)
print(netD)
-- only if originally saved as parallel model
--netG = netG:get(1)
--if opt.gpu == 0 then
netG = netG:double()
--netD = netD:double()
--end
print(netD)
print(netG)
--for i,module in ipairs(netG:listModules()) do
--if i == 2 then
--paramsG = module:getParameters()
--print(module)
--print(paramsG[{{1,100}}])
--end
--end
nz = 200
--nz = netG:get(1).nInputPlane
netG:apply(function(m) if torch.type(m):find('Convolution') and m.bias then m.bias:zero() end end) -- convolution bias is removed during training
netG:evaluate() -- batch normalization behaves differently during evaluation
print('Setting inputs..')
inputs = torch.rand(opt.ss, nz + opt.nc, 1, 1, 1)
if opt.zsample == 'uniform2' then
inputs:uniform(-1,1)
elseif opt.zsample == 'normal' then
print('sampling normal')
inputs:normal(0,1)
end
--if opt.normal then
--inputs:normal(0,1)
--end
input = torch.Tensor(opt.bs, nz + opt.nc, 1, 1, 1)
if opt.gpu > 0 then
netG = netG:cuda()
netG = cudnn.convert(netG, cudnn)
input = input:cuda()
end
testinput = netG:forward(input)
dim = testinput:size()[3]
--results = torch.zeros(opt.ss, 1, 64, 64, 64):double()
results = torch.zeros(opt.ss, 1, dim, dim, dim):double()
if opt.nc > 0 then
for i = 1, opt.ss do
inputs[{i,{nz + 1, nz + opt.nc}}]:fill(0)
inputs[{i, nz + opt.cat}]:fill(1)
end
end
print(inputs[1])
print('Forward prop')
for i = 1, math.ceil(opt.ss / opt.bs) do
ind_low = (i-1)*opt.bs + 1
ind_high = math.min(opt.ss, i * opt.bs)
input:zero()
input[{{1,ind_high-ind_low+1},{},{},{},{}}] = inputs[{{ind_low,ind_high},{},{},{},{}}]
res = netG:forward(input):double()
print(res:size())
print(results:size())
results[{{ind_low,ind_high},{},{},{},{}}] = res[{{1,ind_high-ind_low+1},{},{},{},{}}]
--print(res[1])
end
print('Saving result')
if paths.dir('./output/') == nil then
paths.mkdir('output')
end
cur_time = os.time()
cur_times = '' .. cur_time
fname = 'sample_' ..cur_times .. '_' .. opt.ck .. '_' .. opt.ss
fullfname = paths.concat('./output', fname)
print(results:size())
mat.save(fullfname .. '.mat', {['inputs'] = inputs, ['voxels'] = results})
--for i = 1,opt.ss do
--mat.save(fullfname .. '_' .. i .. '.mat', {['off_volume'] = results[{i,1}]})
--end
print('saving done')