-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_freeze.py
40 lines (29 loc) · 1.19 KB
/
test_freeze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import tensorflow as tf
from tensorflow.python.platform import gfile
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import os
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# y = tf.placeholder(tf.float32, [None, 10], name='LabelData')
# acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# acc = tf.reduce_mean(tf.cast(acc, tf.float32))
frozen_graph_filename = './example/train_model.pb'
with gfile.FastGFile(frozen_graph_filename, "rb") as f:
graph_def = tf.GraphDef()
byte = f.read()
graph_def.ParseFromString(byte)
tf.import_graph_def(graph_def, name='')
for node in graph_def.node:
print(node.name)
with tf.Session() as sess:
detection_graph = tf.get_default_graph()
input_tensor = detection_graph.get_tensor_by_name('input_tensor:0')
output_tensor = detection_graph.get_tensor_by_name('output_tensor:0')
acc = detection_graph.get_tensor_by_name('accuracy:0')
y = detection_graph.get_tensor_by_name('labeled_data:0')
# print(input_tensor.shape)
print("Accuracy:", acc.eval({input_tensor: mnist.test.images, y: mnist.test.labels}))
correct = 0
i = 0