-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtensorboard_train_freeze.py
167 lines (136 loc) · 5.75 KB
/
tensorboard_train_freeze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""
Graph and Loss visualization using Tensorboard.
This example is using the MNIST database of handwritten digits
(http://yann.lecun.com/exdb/mnist/)
"""
from __future__ import print_function
import os
import tqdm
import tensorflow as tf
import numpy as np
from tensorflow.contrib.tensorboard.plugins import projector
from tensorflow.python.tools import freeze_graph
import keras
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
def model(inputs):
# Set model weights
W = tf.Variable(tf.zeros([784, 10]), name='Weights')
b = tf.Variable(tf.zeros([10]), name='Bias')
tf.summary.histogram("weights", W)
tf.summary.histogram("biases", b)
# Construct model and encapsulating all ops into scopes, making
# Tensorboard's Graph visualization more convenient
output = tf.nn.softmax(tf.matmul(inputs, W) + b, name="output_tensor") # Softmax
return output
mnist = input_data.read_data_sets("./data/", one_hot=True)
# Parameters
learning_rate = 0.01
training_epochs = 10
batch_size = 50
display_epoch = 1
logs_path = './example/'
LOG_DIR = "/example"
cmd_path = "\"" + os.getcwd() + "/example\""
PATH_TO_SPRITE_IMAGE = os.path.join(logs_path, 'sprite_1024.png')
# def save_metadata(file):
if not os.path.exists(logs_path):
os.mkdir(logs_path)
with open(os.path.join(logs_path, "s-metadata.tsv"), 'w') as metadata_file:
for row in range(10000):
c = np.nonzero(mnist.test.labels[::1])[1:][0][row]
metadata_file.write('{}\n'.format(c))
metadata = 's-metadata.tsv'
# perparing the embedding
images = tf.Variable(mnist.test.images, name='images')
config = projector.ProjectorConfig()
# One can add multiple embeddings.
embedding = config.embeddings.add()
embedding.tensor_name = images.name
# Link this tensor to its metadata file (e.g. labels).
embedding.metadata_path = metadata
# Saves a config file that TensorBoard will read during startup.
projector.visualize_embeddings(tf.summary.FileWriter(logs_path), config)
embedding.sprite.image_path = PATH_TO_SPRITE_IMAGE
# Specify the width and height of a single thumbnail.
embedding.sprite.single_image_dim.extend([28, 28])
# tf Graph Input
# mnist data image of shape 28*28=784
x = tf.placeholder(tf.float32, [None, 784], name='input_tensor')
# 0-9 digits recognition => 10 classes
y = tf.placeholder(tf.float32, [None, 10], name='labeled_data')
pred = model(x)
# Minimize error using cross entropy
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
# Gradient Descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Accuracy
acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
acc = tf.reduce_mean(tf.cast(acc, tf.float32), name="accuracy")
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Create a summary to monitor cost tensor
tf.summary.scalar("loss", cost)
# Create a summary to monitor accuracy tensor
tf.summary.scalar("accuracy", acc)
# Create a summary to visualize input images
tf.summary.image("input", tf.reshape(x, (50, 28, 28, 1)), 9)
# Merge all summaries into a single op
merged_summary_op = tf.summary.merge_all()
# Start training
with tf.Session() as sess:
# Run the initializer
sess.run(init)
saver = tf.train.Saver(tf.global_variables())
# op to write logs to Tensorboard
summary_writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())
summary_writer.add_graph(sess.graph)
# sess.run(images.initializer)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Run optimization op (backprop), cost op (to get loss value)
# and summary nodes
_, c, summary = sess.run([optimizer, cost, merged_summary_op],
feed_dict={x: batch_xs, y: batch_ys})
# Write logs at every iteration
summary_writer.add_summary(summary, epoch * total_batch + i)
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if (epoch+1) % display_epoch == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
if epoch % 2 == 0:
saver.save(sess, os.path.join(logs_path, 'images.ckpt'))
print("Optimization Finished!")
# Test model
# Calculate accuracy
print("Accuracy:", acc.eval({x: mnist.test.images, y: mnist.test.labels}))
print("Run the command line:\n" \
"--> tensorboard --logdir={}".format(cmd_path),
"\nThen open http://0.0.0.0:6006/ into your web browser")
tf.train.write_graph(sess.graph.as_graph_def(), logs_path, 'train.pb')
input_graph_path = os.path.join(logs_path, 'train.pb')
input_saver_def_path = ""
input_binary = False
input_checkpoint_path = os.path.join(logs_path, 'images.ckpt')
output_graph_path = os.path.join(logs_path, 'train_model.pb')
clear_devices = False
output_node_names = "output_tensor,input_tensor,labeled_data,Weights,Bias,accuracy"
restore_op_name = "save/restore_all"
filename_tensor_name = "save/Const:0"
initializer_nodes = ""
freeze_graph.freeze_graph(input_graph_path,
input_saver_def_path,
input_binary,
input_checkpoint_path,
output_node_names,
restore_op_name,
filename_tensor_name,
output_graph_path,
clear_devices,
initializer_nodes)