This repository has been archived by the owner on Aug 19, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathexport_state_dict_checkpoint.py
152 lines (137 loc) · 5 KB
/
export_state_dict_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python3
# modified from https://github.com/tloen/alpaca-lora/blob/main/export_state_dict_checkpoint.py
import os
import sys
import json
import torch
import transformers
from peft import PeftModel, LoraConfig
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip3 uninstall transformers && pip3 install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM
if len(sys.argv) != 2:
print("Run as: python3 export_state_dict_checkpoint.py 7B")
print(" or python3 export_state_dict_checkpoint.py 13B")
sys.exit()
if sys.argv[1] == "7B":
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
base_model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
load_in_8bit=False,
torch_dtype=torch.float16,
device_map={"": "cpu"},
)
lora_model = PeftModel.from_pretrained(
base_model,
"tloen/alpaca-lora-7b",
device_map={"": "cpu"},
torch_dtype=torch.float16,
)
params = {
"dim": 4096,
"multiple_of": 256,
"n_heads": 32,
"n_layers": 32,
"norm_eps": 1e-06,
"vocab_size": -1,
}
elif sys.argv[1] == "13B":
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-13b-hf")
base_model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-13b-hf",
load_in_8bit=False,
torch_dtype=torch.float16,
device_map={"": "cpu"},
)
lora_model = PeftModel.from_pretrained(
base_model,
"samwit/alpaca13B-lora",
device_map={"": "cpu"},
torch_dtype=torch.float16,
)
params = {
"dim": 5120,
"multiple_of": 256,
"n_heads": 40,
"n_layers": 40,
"norm_eps": 1e-06,
"vocab_size": -1,
}
else:
print("Run as: python3 export_state_dict_checkpoint.py 7B")
print(" or python3 export_state_dict_checkpoint.py 13B")
sys.exit()
for layer in lora_model.base_model.model.model.layers:
layer.self_attn.q_proj.merge_weights = True
layer.self_attn.v_proj.merge_weights = True
lora_model.train(False)
lora_model_sd = lora_model.state_dict()
n_layers = params["n_layers"]
n_heads = params["n_heads"]
dim = params["dim"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
def permute(w):
return (
w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
)
def unpermute(w):
return (
w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim)
)
def translate_state_dict_key(k):
k = k.replace("base_model.model.", "")
if k == "model.embed_tokens.weight":
return "tok_embeddings.weight"
elif k == "model.norm.weight":
return "norm.weight"
elif k == "lm_head.weight":
return "output.weight"
elif k.startswith("model.layers."):
layer = k.split(".")[2]
if k.endswith(".self_attn.q_proj.weight"):
return f"layers.{layer}.attention.wq.weight"
elif k.endswith(".self_attn.k_proj.weight"):
return f"layers.{layer}.attention.wk.weight"
elif k.endswith(".self_attn.v_proj.weight"):
return f"layers.{layer}.attention.wv.weight"
elif k.endswith(".self_attn.o_proj.weight"):
return f"layers.{layer}.attention.wo.weight"
elif k.endswith(".mlp.gate_proj.weight"):
return f"layers.{layer}.feed_forward.w1.weight"
elif k.endswith(".mlp.down_proj.weight"):
return f"layers.{layer}.feed_forward.w2.weight"
elif k.endswith(".mlp.up_proj.weight"):
return f"layers.{layer}.feed_forward.w3.weight"
elif k.endswith(".input_layernorm.weight"):
return f"layers.{layer}.attention_norm.weight"
elif k.endswith(".post_attention_layernorm.weight"):
return f"layers.{layer}.ffn_norm.weight"
elif k.endswith("rotary_emb.inv_freq") or "lora" in k:
return None
else:
print(layer, k)
raise NotImplementedError
else:
print(k)
raise NotImplementedError
new_state_dict = {}
for k, v in lora_model_sd.items():
new_k = translate_state_dict_key(k)
if new_k is not None:
if "wq" in new_k or "wk" in new_k:
new_state_dict[new_k] = unpermute(v)
else:
new_state_dict[new_k] = v
if sys.argv[1] == "7B":
os.makedirs("models/7B-alpaca", exist_ok=True)
torch.save(new_state_dict, "models/7B-alpaca/consolidated.00.pth")
with open("models/7B-alpaca/params.json", "w") as f:
json.dump(params, f)
elif sys.argv[1] == "13B":
os.makedirs("models/13B-alpaca", exist_ok=True)
torch.save(new_state_dict, "models/13B-alpaca/consolidated.00.pth")
with open("models/13B-alpaca/params.json", "w") as f:
json.dump(params, f)