This repository has been archived by the owner on Aug 19, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathchat.py
executable file
·146 lines (125 loc) · 4.61 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
import warnings
warnings.filterwarnings("ignore")
import os
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import resource
resource.setrlimit(resource.RLIMIT_NOFILE, (10000, 10000))
import sys
import fire
import time
import json
import torch
import random
import pyarrow as pa
from pathlib import Path
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
def load(
ckpt_dir: str,
tokenizer_path: str,
max_seq_len: int,
max_batch_size: int,
) -> LLaMA:
arrow_dir = Path(ckpt_dir).expanduser() / "arrow"
if not arrow_dir.exists():
checkpoints = sorted(Path(ckpt_dir).expanduser().glob("*.pth"))
if len(checkpoints) > 1:
print(
"The selected model is split into several checkpoints and needs to be merged first.\nUse the 'reshard.py' script."
)
sys.exit()
print("Converting checkpoint to pyarrow format")
for ckpt_file in checkpoints:
print(ckpt_file)
index = ckpt_file.parts[-1].split(".")[-2]
ckpt = torch.load(ckpt_file, map_location="cpu")
(arrow_dir / index).mkdir(parents=True, exist_ok=True)
for k, v in ckpt.items():
tens = pa.Tensor.from_numpy(v.numpy())
with pa.output_stream(arrow_dir / index / k) as f:
pa.ipc.write_tensor(tens, f)
ckpt = None
print(
"Checkpoint converted - feel free to delete the original '.pth' file (while keeping the 'arrow' folder)"
)
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
random_seed = random.randint(1, 65534)
torch.manual_seed(random_seed)
print(f"Seed: {random_seed:5d}")
start_time = time.time()
print("Loading checkpoint")
segments = sorted((arrow_dir / "00").glob("*"))
checkpoint = {}
files = []
for seg in segments:
f = pa.memory_map(str(seg))
files.append(f)
t = pa.ipc.read_tensor(f).to_numpy()
t = torch.from_numpy(t)
checkpoint[seg.parts[-1]] = t
f.close()
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.HalfTensor)
model = Transformer(model_args)
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
model = model.to("mps")
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def main(
ckpt_dir: str,
tokenizer_path: str,
temperature: float = 0.7,
top_p: float = 0.75,
use_repetition_penalty: bool = True,
repetition_penalty_range: int = 1024,
repetition_penalty_slope: float = 0,
repetition_penalty: float = 1.15,
max_seq_len: int = 512,
max_batch_size: int = 1,
):
generator = load(ckpt_dir, tokenizer_path, max_seq_len, max_batch_size)
if 'B-alpaca' in ckpt_dir:
alpaca_mode = True
print("Running the fine-tuned 'alpaca' model in an instruction-response mode.")
else:
alpaca_mode = False
print("Running the raw 'llama' model in an auto-complete mode.")
try:
while True:
if alpaca_mode:
queryInputs = [
f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{input("Instruction: ")}
### Response:"""
]
print("Response: ", end="")
else:
queryInputs = [input("Enter your LLaMA prompt: ")]
print("Thinking...")
queryTime = time.time()
results = generator.generate(
queryInputs,
max_gen_len=max_seq_len,
temperature=temperature,
top_p=top_p,
use_repetition_penalty=use_repetition_penalty,
repetition_penalty_range=repetition_penalty_range,
repetition_penalty_slope=repetition_penalty_slope,
repetition_penalty=repetition_penalty,
)
print(f"\n\nInferred in {time.time() - queryTime:.2f} seconds")
print("==================================\n")
except KeyboardInterrupt:
sys.exit()
if __name__ == "__main__":
fire.Fire(main)