-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathFunction.h
950 lines (843 loc) · 32.9 KB
/
Function.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
/*
* Copyright 2016-present Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* @author Eric Niebler ([email protected]), Sven Over ([email protected])
* Acknowledgements: Giuseppe Ottaviano ([email protected])
*/
/**
* @class Function
*
* @brief A polymorphic function wrapper that is not copyable and does not
* require the wrapped function to be copy constructible.
*
* `folly::Function` is a polymorphic function wrapper, similar to
* `std::function`. The template parameters of the `folly::Function` define
* the parameter signature of the wrapped callable, but not the specific
* type of the embedded callable. E.g. a `folly::Function<int(int)>`
* can wrap callables that return an `int` when passed an `int`. This can be a
* function pointer or any class object implementing one or both of
*
* int operator(int);
* int operator(int) const;
*
* If both are defined, the non-const one takes precedence.
*
* Unlike `std::function`, a `folly::Function` can wrap objects that are not
* copy constructible. As a consequence of this, `folly::Function` itself
* is not copyable, either.
*
* Another difference is that, unlike `std::function`, `folly::Function` treats
* const-ness of methods correctly. While a `std::function` allows to wrap
* an object that only implements a non-const `operator()` and invoke
* a const-reference of the `std::function`, `folly::Function` requires you to
* declare a function type as const in order to be able to execute it on a
* const-reference.
*
* For example:
*
* class Foo {
* public:
* void operator()() {
* // mutates the Foo object
* }
* };
*
* class Bar {
* std::function<void(void)> foo_; // wraps a Foo object
* public:
* void mutateFoo() const
* {
* foo_();
* }
* };
*
* Even though `mutateFoo` is a const-method, so it can only reference `foo_`
* as const, it is able to call the non-const `operator()` of the Foo
* object that is embedded in the foo_ function.
*
* `folly::Function` will not allow you to do that. You will have to decide
* whether you need to invoke your wrapped callable from a const reference
* (like in the example above), in which case it will only wrap a
* `operator() const`. If your functor does not implement that,
* compilation will fail. If you do not require to be able to invoke the
* wrapped function in a const context, you can wrap any functor that
* implements either or both of const and non-const `operator()`.
*
* The template parameter of `folly::Function`, the `FunctionType`, can be
* const-qualified. Be aware that the const is part of the function signature.
* It does not mean that the function type is a const type.
*
* using FunctionType = R(Args...);
* using ConstFunctionType = R(Args...) const;
*
* In this example, `FunctionType` and `ConstFunctionType` are different
* types. `ConstFunctionType` is not the same as `const FunctionType`.
* As a matter of fact, trying to use the latter should emit a compiler
* warning or error, because it has no defined meaning.
*
* // This will not compile:
* folly::Function<void(void) const> func = Foo();
* // because Foo does not have a member function of the form:
* // void operator()() const;
*
* // This will compile just fine:
* folly::Function<void(void)> func = Foo();
* // and it will wrap the existing member function:
* // void operator()();
*
* When should a const function type be used? As a matter of fact, you will
* probably not need to use const function types very often. See the following
* example:
*
* class Bar {
* folly::Function<void()> func_;
* folly::Function<void() const> constFunc_;
*
* void someMethod() {
* // Can call func_.
* func_();
* // Can call constFunc_.
* constFunc_();
* }
*
* void someConstMethod() const {
* // Can call constFunc_.
* constFunc_();
* // However, cannot call func_ because a non-const method cannot
* // be called from a const one.
* }
* };
*
* As you can see, whether the `folly::Function`'s function type should
* be declared const or not is identical to whether a corresponding method
* would be declared const or not.
*
* You only require a `folly::Function` to hold a const function type, if you
* intend to invoke it from within a const context. This is to ensure that
* you cannot mutate its inner state when calling in a const context.
*
* This is how the const/non-const choice relates to lambda functions:
*
* // Non-mutable lambdas: can be stored in a non-const...
* folly::Function<void(int)> print_number =
* [] (int number) { std::cout << number << std::endl; };
*
* // ...as well as in a const folly::Function
* folly::Function<void(int) const> print_number_const =
* [] (int number) { std::cout << number << std::endl; };
*
* // Mutable lambda: can only be stored in a non-const folly::Function:
* int number = 0;
* folly::Function<void()> print_number =
* [number] () mutable { std::cout << ++number << std::endl; };
* // Trying to store the above mutable lambda in a
* // `folly::Function<void() const>` would lead to a compiler error:
* // error: no viable conversion from '(lambda at ...)' to
* // 'folly::Function<void () const>'
*
* Casting between const and non-const `folly::Function`s:
* conversion from const to non-const signatures happens implicitly. Any
* function that takes a `folly::Function<R(Args...)>` can be passed
* a `folly::Function<R(Args...) const>` without explicit conversion.
* This is safe, because casting from const to non-const only entails giving
* up the ability to invoke the function from a const context.
* Casting from a non-const to a const signature is potentially dangerous,
* as it means that a function that may change its inner state when invoked
* is made possible to call from a const context. Therefore this cast does
* not happen implicitly. The function `folly::constCastFunction` can
* be used to perform the cast.
*
* // Mutable lambda: can only be stored in a non-const folly::Function:
* int number = 0;
* folly::Function<void()> print_number =
* [number] () mutable { std::cout << ++number << std::endl; };
*
* // const-cast to a const folly::Function:
* folly::Function<void() const> print_number_const =
* constCastFunction(std::move(print_number));
*
* When to use const function types?
* Generally, only when you need them. When you use a `folly::Function` as a
* member of a struct or class, only use a const function signature when you
* need to invoke the function from const context.
* When passing a `folly::Function` to a function, the function should accept
* a non-const `folly::Function` whenever possible, i.e. when it does not
* need to pass on or store a const `folly::Function`. This is the least
* possible constraint: you can always pass a const `folly::Function` when
* the function accepts a non-const one.
*
* How does the const behaviour compare to `std::function`?
* `std::function` can wrap object with non-const invokation behaviour but
* exposes them as const. The equivalent behaviour can be achieved with
* `folly::Function` like so:
*
* std::function<void(void)> stdfunc = someCallable;
*
* folly::Function<void(void) const> uniqfunc = constCastFunction(
* folly::Function<void(void)>(someCallable)
* );
*
* You need to wrap the callable first in a non-const `folly::Function` to
* select a non-const invoke operator (or the const one if no non-const one is
* present), and then move it into a const `folly::Function` using
* `constCastFunction`.
* The name of `constCastFunction` should warn you that something
* potentially dangerous is happening. As a matter of fact, using
* `std::function` always involves this potentially dangerous aspect, which
* is why it is not considered fully const-safe or even const-correct.
* However, in most of the cases you will not need the dangerous aspect at all.
* Either you do not require invokation of the function from a const context,
* in which case you do not need to use `constCastFunction` and just
* use the inner `folly::Function` in the example above, i.e. just use a
* non-const `folly::Function`. Or, you may need invokation from const, but
* the callable you are wrapping does not mutate its state (e.g. it is a class
* object and implements `operator() const`, or it is a normal,
* non-mutable lambda), in which case you can wrap the callable in a const
* `folly::Function` directly, without using `constCastFunction`.
* Only if you require invokation from a const context of a callable that
* may mutate itself when invoked you have to go through the above procedure.
* However, in that case what you do is potentially dangerous and requires
* the equivalent of a `const_cast`, hence you need to call
* `constCastFunction`.
*/
#pragma once
#include <functional>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>
#include <folly/CppAttributes.h>
#include <folly/Portability.h>
#include <folly/Traits.h>
#include <folly/functional/Invoke.h>
#include <folly/lang/Exception.h>
namespace folly {
template <typename FunctionType>
class Function;
template <typename ReturnType, typename... Args>
Function<ReturnType(Args...) const> constCastFunction(
Function<ReturnType(Args...)>&&) noexcept;
#if FOLLY_HAVE_NOEXCEPT_FUNCTION_TYPE
template <typename ReturnType, typename... Args>
Function<ReturnType(Args...) const noexcept> constCastFunction(
Function<ReturnType(Args...) noexcept>&&) noexcept;
#endif
namespace detail {
namespace function {
enum class Op { MOVE, NUKE, HEAP };
union Data {
Data() {}
void* big;
std::aligned_storage<6 * sizeof(void*)>::type tiny;
};
template <typename Fun, typename = Fun*>
using IsSmall = Conjunction<
bool_constant<(sizeof(Fun) <= sizeof(Data::tiny))>,
std::is_nothrow_move_constructible<Fun>>;
using SmallTag = std::true_type;
using HeapTag = std::false_type;
template <typename T>
struct NotFunction : std::true_type {};
template <typename T>
struct NotFunction<Function<T>> : std::false_type {};
template <typename T>
using EnableIfNotFunction =
typename std::enable_if<NotFunction<T>::value>::type;
struct CoerceTag {};
template <typename T>
bool isNullPtrFn(T* p) {
return p == nullptr;
}
template <typename T>
std::false_type isNullPtrFn(T&&) {
return {};
}
template <typename F, typename... Args>
using CallableResult = decltype(std::declval<F>()(std::declval<Args>()...));
template <
typename From,
typename To,
typename = typename std::enable_if<
!std::is_reference<To>::value || std::is_reference<From>::value>::type>
using SafeResultOf = decltype(static_cast<To>(std::declval<From>()));
template <typename FunctionType>
struct FunctionTraits;
template <typename ReturnType, typename... Args>
struct FunctionTraits<ReturnType(Args...)> {
using Call = ReturnType (*)(Data&, Args&&...);
using IsConst = std::false_type;
using ConstSignature = ReturnType(Args...) const;
using NonConstSignature = ReturnType(Args...);
using OtherSignature = ConstSignature;
template <typename F>
using ResultOf =
SafeResultOf<CallableResult<_t<std::decay<F>>&, Args...>, ReturnType>;
template <typename Fun>
static ReturnType callSmall(Data& p, Args&&... args) {
return static_cast<ReturnType>((*static_cast<Fun*>(
static_cast<void*>(&p.tiny)))(static_cast<Args&&>(args)...));
}
template <typename Fun>
static ReturnType callBig(Data& p, Args&&... args) {
return static_cast<ReturnType>(
(*static_cast<Fun*>(p.big))(static_cast<Args&&>(args)...));
}
static ReturnType uninitCall(Data&, Args&&...) {
throw std::bad_function_call();
}
ReturnType operator()(Args... args) {
auto& fn = *static_cast<Function<NonConstSignature>*>(this);
return fn.call_(fn.data_, static_cast<Args&&>(args)...);
}
class SharedProxy {
std::shared_ptr<Function<NonConstSignature>> sp_;
public:
explicit SharedProxy(Function<NonConstSignature>&& func)
: sp_(std::make_shared<Function<NonConstSignature>>(std::move(func))) {}
ReturnType operator()(Args&&... args) const {
return (*sp_)(static_cast<Args&&>(args)...);
}
};
};
template <typename ReturnType, typename... Args>
struct FunctionTraits<ReturnType(Args...) const> {
using Call = ReturnType (*)(Data&, Args&&...);
using IsConst = std::true_type;
using ConstSignature = ReturnType(Args...) const;
using NonConstSignature = ReturnType(Args...);
using OtherSignature = NonConstSignature;
template <typename F>
using ResultOf = SafeResultOf<
CallableResult<const _t<std::decay<F>>&, Args...>,
ReturnType>;
template <typename Fun>
static ReturnType callSmall(Data& p, Args&&... args) {
return static_cast<ReturnType>((*static_cast<const Fun*>(
static_cast<void*>(&p.tiny)))(static_cast<Args&&>(args)...));
}
template <typename Fun>
static ReturnType callBig(Data& p, Args&&... args) {
return static_cast<ReturnType>(
(*static_cast<const Fun*>(p.big))(static_cast<Args&&>(args)...));
}
static ReturnType uninitCall(Data&, Args&&...) {
throw std::bad_function_call();
}
ReturnType operator()(Args... args) const {
auto& fn = *static_cast<const Function<ConstSignature>*>(this);
return fn.call_(fn.data_, static_cast<Args&&>(args)...);
}
class SharedProxy {
std::shared_ptr<Function<ConstSignature>> sp_;
public:
explicit SharedProxy(Function<ConstSignature>&& func)
: sp_(std::make_shared<Function<ConstSignature>>(std::move(func))) {}
ReturnType operator()(Args&&... args) const {
return (*sp_)(static_cast<Args&&>(args)...);
}
};
};
#if FOLLY_HAVE_NOEXCEPT_FUNCTION_TYPE
template <typename ReturnType, typename... Args>
struct FunctionTraits<ReturnType(Args...) noexcept> {
using Call = ReturnType (*)(Data&, Args&&...) noexcept;
using IsConst = std::false_type;
using ConstSignature = ReturnType(Args...) const noexcept;
using NonConstSignature = ReturnType(Args...) noexcept;
using OtherSignature = ConstSignature;
template <typename F>
using ResultOf =
SafeResultOf<CallableResult<_t<std::decay<F>>&, Args...>, ReturnType>;
template <typename Fun>
static ReturnType callSmall(Data& p, Args&&... args) noexcept {
return static_cast<ReturnType>((*static_cast<Fun*>(
static_cast<void*>(&p.tiny)))(static_cast<Args&&>(args)...));
}
template <typename Fun>
static ReturnType callBig(Data& p, Args&&... args) noexcept {
return static_cast<ReturnType>(
(*static_cast<Fun*>(p.big))(static_cast<Args&&>(args)...));
}
static ReturnType uninitCall(Data&, Args&&...) noexcept {
terminate_with<std::bad_function_call>();
}
ReturnType operator()(Args... args) noexcept {
auto& fn = *static_cast<Function<NonConstSignature>*>(this);
return fn.call_(fn.data_, static_cast<Args&&>(args)...);
}
class SharedProxy {
std::shared_ptr<Function<NonConstSignature>> sp_;
public:
explicit SharedProxy(Function<NonConstSignature>&& func)
: sp_(std::make_shared<Function<NonConstSignature>>(std::move(func))) {}
ReturnType operator()(Args&&... args) const {
return (*sp_)(static_cast<Args&&>(args)...);
}
};
};
template <typename ReturnType, typename... Args>
struct FunctionTraits<ReturnType(Args...) const noexcept> {
using Call = ReturnType (*)(Data&, Args&&...) noexcept;
using IsConst = std::true_type;
using ConstSignature = ReturnType(Args...) const noexcept;
using NonConstSignature = ReturnType(Args...) noexcept;
using OtherSignature = NonConstSignature;
template <typename F>
using ResultOf = SafeResultOf<
CallableResult<const _t<std::decay<F>>&, Args...>,
ReturnType>;
template <typename Fun>
static ReturnType callSmall(Data& p, Args&&... args) noexcept {
return static_cast<ReturnType>((*static_cast<const Fun*>(
static_cast<void*>(&p.tiny)))(static_cast<Args&&>(args)...));
}
template <typename Fun>
static ReturnType callBig(Data& p, Args&&... args) noexcept {
return static_cast<ReturnType>(
(*static_cast<const Fun*>(p.big))(static_cast<Args&&>(args)...));
}
static ReturnType uninitCall(Data&, Args&&...) noexcept {
throw std::bad_function_call();
}
ReturnType operator()(Args... args) const noexcept {
auto& fn = *static_cast<const Function<ConstSignature>*>(this);
return fn.call_(fn.data_, static_cast<Args&&>(args)...);
}
class SharedProxy {
std::shared_ptr<Function<ConstSignature>> sp_;
public:
explicit SharedProxy(Function<ConstSignature>&& func)
: sp_(std::make_shared<Function<ConstSignature>>(std::move(func))) {}
ReturnType operator()(Args&&... args) const {
return (*sp_)(static_cast<Args&&>(args)...);
}
};
};
#endif
template <typename Fun>
bool execSmall(Op o, Data* src, Data* dst) {
switch (o) {
case Op::MOVE:
::new (static_cast<void*>(&dst->tiny))
Fun(std::move(*static_cast<Fun*>(static_cast<void*>(&src->tiny))));
FOLLY_FALLTHROUGH;
case Op::NUKE:
static_cast<Fun*>(static_cast<void*>(&src->tiny))->~Fun();
break;
case Op::HEAP:
break;
}
return false;
}
template <typename Fun>
bool execBig(Op o, Data* src, Data* dst) {
switch (o) {
case Op::MOVE:
dst->big = src->big;
src->big = nullptr;
break;
case Op::NUKE:
delete static_cast<Fun*>(src->big);
break;
case Op::HEAP:
break;
}
return true;
}
} // namespace function
} // namespace detail
template <typename FunctionType>
class Function final : private detail::function::FunctionTraits<FunctionType> {
// These utility types are defined outside of the template to reduce
// the number of instantiations, and then imported in the class
// namespace for convenience.
using Data = detail::function::Data;
using Op = detail::function::Op;
using SmallTag = detail::function::SmallTag;
using HeapTag = detail::function::HeapTag;
using CoerceTag = detail::function::CoerceTag;
using Traits = detail::function::FunctionTraits<FunctionType>;
using Call = typename Traits::Call;
using Exec = bool (*)(Op, Data*, Data*);
template <typename Fun>
using IsSmall = detail::function::IsSmall<Fun>;
// The `data_` member is mutable to allow `constCastFunction` to work without
// invoking undefined behavior. Const-correctness is only violated when
// `FunctionType` is a const function type (e.g., `int() const`) and `*this`
// is the result of calling `constCastFunction`.
mutable Data data_{};
Call call_{&Traits::uninitCall};
Exec exec_{nullptr};
bool exec(Op o, Data* src, Data* dst) const {
return exec_ && exec_(o, src, dst);
}
friend Traits;
friend Function<typename Traits::ConstSignature> folly::constCastFunction<>(
Function<typename Traits::NonConstSignature>&&) noexcept;
friend class Function<typename Traits::OtherSignature>;
template <typename Fun>
Function(Fun&& fun, SmallTag) noexcept {
using FunT = typename std::decay<Fun>::type;
if (!detail::function::isNullPtrFn(fun)) {
::new (static_cast<void*>(&data_.tiny)) FunT(static_cast<Fun&&>(fun));
call_ = &Traits::template callSmall<FunT>;
exec_ = &detail::function::execSmall<FunT>;
}
}
template <typename Fun>
Function(Fun&& fun, HeapTag) {
using FunT = typename std::decay<Fun>::type;
data_.big = new FunT(static_cast<Fun&&>(fun));
call_ = &Traits::template callBig<FunT>;
exec_ = &detail::function::execBig<FunT>;
}
template <typename Signature>
Function(Function<Signature>&& that, CoerceTag)
: Function(static_cast<Function<Signature>&&>(that), HeapTag{}) {}
Function(Function<typename Traits::OtherSignature>&& that, CoerceTag) noexcept
: call_(that.call_), exec_(that.exec_) {
that.call_ = &Traits::uninitCall;
that.exec_ = nullptr;
exec(Op::MOVE, &that.data_, &data_);
}
public:
/**
* Default constructor. Constructs an empty Function.
*/
Function() = default;
// not copyable
Function(const Function&) = delete;
#if __OBJC__
// Make sure Objective C blocks are copied
template <class ReturnType, class... Args>
/*implicit*/ Function(ReturnType (^objCBlock)(Args... args))
: Function([blockCopy = (ReturnType(^)(Args...))[objCBlock copy]](
Args... args) { return blockCopy(args...); }){};
#endif
/**
* Move constructor
*/
Function(Function&& that) noexcept : call_(that.call_), exec_(that.exec_) {
// that must be uninitialized before exec() call in the case of self move
that.call_ = &Traits::uninitCall;
that.exec_ = nullptr;
exec(Op::MOVE, &that.data_, &data_);
}
/**
* Constructs an empty `Function`.
*/
/* implicit */ Function(std::nullptr_t) noexcept {}
/**
* Constructs a new `Function` from any callable object that is _not_ a
* `folly::Function`. This handles function pointers, pointers to static
* member functions, `std::reference_wrapper` objects, `std::function`
* objects, and arbitrary objects that implement `operator()` if the parameter
* signature matches (i.e. it returns an object convertible to `R` when called
* with `Args...`).
*
* \note `typename Traits::template ResultOf<Fun>` prevents this overload
* from being selected by overload resolution when `fun` is not a compatible
* function.
*
* \note The noexcept requires some explanation. `IsSmall` is true when the
* decayed type fits within the internal buffer and is noexcept-movable. But
* this ctor might copy, not move. What we need here, if this ctor does a
* copy, is that this ctor be noexcept when the copy is noexcept. That is not
* checked in `IsSmall`, and shouldn't be, because once the `Function` is
* constructed, the contained object is never copied. This check is for this
* ctor only, in the case that this ctor does a copy.
*/
template <
typename Fun,
typename = detail::function::EnableIfNotFunction<Fun>,
typename = typename Traits::template ResultOf<Fun>>
/* implicit */ Function(Fun fun) noexcept(
IsSmall<Fun>::value&& noexcept(Fun(std::declval<Fun>())))
: Function(std::move(fun), IsSmall<Fun>{}) {}
/**
* For move-constructing from a `folly::Function<X(Ys...) [const?]>`.
* For a `Function` with a `const` function type, the object must be
* callable from a `const`-reference, i.e. implement `operator() const`.
* For a `Function` with a non-`const` function type, the object will
* be called from a non-const reference, which means that it will execute
* a non-const `operator()` if it is defined, and falls back to
* `operator() const` otherwise.
*/
template <
typename Signature,
typename = typename Traits::template ResultOf<Function<Signature>>>
Function(Function<Signature>&& that) noexcept(
noexcept(Function(std::move(that), CoerceTag{})))
: Function(std::move(that), CoerceTag{}) {}
/**
* If `ptr` is null, constructs an empty `Function`. Otherwise,
* this constructor is equivalent to `Function(std::mem_fn(ptr))`.
*/
template <
typename Member,
typename Class,
// Prevent this overload from being selected when `ptr` is not a
// compatible member function pointer.
typename = decltype(Function(std::mem_fn((Member Class::*)0)))>
/* implicit */ Function(Member Class::*ptr) noexcept {
if (ptr) {
*this = std::mem_fn(ptr);
}
}
~Function() {
exec(Op::NUKE, &data_, nullptr);
}
Function& operator=(const Function&) = delete;
#if __OBJC__
// Make sure Objective C blocks are copied
template <class ReturnType, class... Args>
/* implicit */ Function& operator=(ReturnType (^objCBlock)(Args... args)) {
(*this) = [blockCopy = (ReturnType(^)(Args...))[objCBlock copy]](
Args... args) { return blockCopy(args...); };
return *this;
}
#endif
/**
* Move assignment operator
*
* \note Leaves `that` in a valid but unspecified state. If `&that == this`
* then `*this` is left in a valid but unspecified state.
*/
Function& operator=(Function&& that) noexcept {
// Q: Why is it safe to destroy and reconstruct this object in place?
// A: Two reasons: First, `Function` is a final class, so in doing this
// we aren't slicing off any derived parts. And second, the move
// operation is guaranteed not to throw so we always leave the object
// in a valid state.
// In the case of self-move (this == &that), this leaves the object in
// a default-constructed state. First the object is destroyed, then we
// pass the destroyed object to the move constructor. The first thing the
// move constructor does is default-construct the object. That object is
// "moved" into itself, which is a no-op for a default-constructed Function.
this->~Function();
::new (this) Function(std::move(that));
return *this;
}
/**
* Assigns a callable object to this `Function`. If the operation fails,
* `*this` is left unmodified.
*
* \note `typename = decltype(Function(std::declval<Fun>()))` prevents this
* overload from being selected by overload resolution when `fun` is not a
* compatible function.
*/
template <typename Fun, typename = decltype(Function(std::declval<Fun>()))>
Function& operator=(Fun fun) noexcept(
noexcept(/* implicit */ Function(std::declval<Fun>()))) {
// Doing this in place is more efficient when we can do so safely.
if (noexcept(/* implicit */ Function(std::declval<Fun>()))) {
// Q: Why is is safe to destroy and reconstruct this object in place?
// A: See the explanation in the move assignment operator.
this->~Function();
::new (this) Function(std::move(fun));
} else {
// Construct a temporary and (nothrow) swap.
Function(std::move(fun)).swap(*this);
}
return *this;
}
/**
* For assigning from a `Function<X(Ys..) [const?]>`.
*/
template <
typename Signature,
typename = typename Traits::template ResultOf<Function<Signature>>>
Function& operator=(Function<Signature>&& that) noexcept(
noexcept(Function(std::move(that)))) {
return (*this = Function(std::move(that)));
}
/**
* Clears this `Function`.
*/
Function& operator=(std::nullptr_t) noexcept {
return (*this = Function());
}
/**
* If `ptr` is null, clears this `Function`. Otherwise, this assignment
* operator is equivalent to `*this = std::mem_fn(ptr)`.
*/
template <typename Member, typename Class>
auto operator=(Member Class::*ptr) noexcept
// Prevent this overload from being selected when `ptr` is not a
// compatible member function pointer.
-> decltype(operator=(std::mem_fn(ptr))) {
return ptr ? (*this = std::mem_fn(ptr)) : (*this = Function());
}
/**
* Call the wrapped callable object with the specified arguments.
*/
using Traits::operator();
/**
* Exchanges the callable objects of `*this` and `that`.
*/
void swap(Function& that) noexcept {
std::swap(*this, that);
}
/**
* Returns `true` if this `Function` contains a callable, i.e. is
* non-empty.
*/
explicit operator bool() const noexcept {
return exec_ != nullptr;
}
/**
* Returns `true` if this `Function` stores the callable on the
* heap. If `false` is returned, there has been no additional memory
* allocation and the callable is stored inside the `Function`
* object itself.
*/
bool hasAllocatedMemory() const noexcept {
return exec(Op::HEAP, nullptr, nullptr);
}
using typename Traits::SharedProxy;
/**
* Move this `Function` into a copyable callable object, of which all copies
* share the state.
*/
SharedProxy asSharedProxy() && {
return SharedProxy{std::move(*this)};
}
/**
* Construct a `std::function` by moving in the contents of this `Function`.
* Note that the returned `std::function` will share its state (i.e. captured
* data) across all copies you make of it, so be very careful when copying.
*/
std::function<typename Traits::NonConstSignature> asStdFunction() && {
return std::move(*this).asSharedProxy();
}
};
template <typename FunctionType>
void swap(Function<FunctionType>& lhs, Function<FunctionType>& rhs) noexcept {
lhs.swap(rhs);
}
template <typename FunctionType>
bool operator==(const Function<FunctionType>& fn, std::nullptr_t) {
return !fn;
}
template <typename FunctionType>
bool operator==(std::nullptr_t, const Function<FunctionType>& fn) {
return !fn;
}
template <typename FunctionType>
bool operator!=(const Function<FunctionType>& fn, std::nullptr_t) {
return !(fn == nullptr);
}
template <typename FunctionType>
bool operator!=(std::nullptr_t, const Function<FunctionType>& fn) {
return !(nullptr == fn);
}
/**
* NOTE: See detailed note about `constCastFunction` at the top of the file.
* This is potentially dangerous and requires the equivalent of a `const_cast`.
*/
template <typename ReturnType, typename... Args>
Function<ReturnType(Args...) const> constCastFunction(
Function<ReturnType(Args...)>&& that) noexcept {
return Function<ReturnType(Args...) const>{std::move(that),
detail::function::CoerceTag{}};
}
template <typename ReturnType, typename... Args>
Function<ReturnType(Args...) const> constCastFunction(
Function<ReturnType(Args...) const>&& that) noexcept {
return std::move(that);
}
#if FOLLY_HAVE_NOEXCEPT_FUNCTION_TYPE
template <typename ReturnType, typename... Args>
Function<ReturnType(Args...) const noexcept> constCastFunction(
Function<ReturnType(Args...) noexcept>&& that) noexcept {
return Function<ReturnType(Args...) const noexcept>{
std::move(that), detail::function::CoerceTag{}};
}
template <typename ReturnType, typename... Args>
Function<ReturnType(Args...) const noexcept> constCastFunction(
Function<ReturnType(Args...) const noexcept>&& that) noexcept {
return std::move(that);
}
#endif
/**
* @class FunctionRef
*
* @brief A reference wrapper for callable objects
*
* FunctionRef is similar to std::reference_wrapper, but the template parameter
* is the function signature type rather than the type of the referenced object.
* A folly::FunctionRef is cheap to construct as it contains only a pointer to
* the referenced callable and a pointer to a function which invokes the
* callable.
*
* The user of FunctionRef must be aware of the reference semantics: storing a
* copy of a FunctionRef is potentially dangerous and should be avoided unless
* the referenced object definitely outlives the FunctionRef object. Thus any
* function that accepts a FunctionRef parameter should only use it to invoke
* the referenced function and not store a copy of it. Knowing that FunctionRef
* itself has reference semantics, it is generally okay to use it to reference
* lambdas that capture by reference.
*/
template <typename FunctionType>
class FunctionRef;
template <typename ReturnType, typename... Args>
class FunctionRef<ReturnType(Args...)> final {
using Call = ReturnType (*)(void*, Args&&...);
static ReturnType uninitCall(void*, Args&&...) {
throw std::bad_function_call();
}
template <typename Fun>
static ReturnType call(void* object, Args&&... args) {
using Pointer = _t<std::add_pointer<Fun>>;
return static_cast<ReturnType>(invoke(
static_cast<Fun&&>(*static_cast<Pointer>(object)),
static_cast<Args&&>(args)...));
}
void* object_{nullptr};
Call call_{&FunctionRef::uninitCall};
public:
/**
* Default constructor. Constructs an empty FunctionRef.
*
* Invoking it will throw std::bad_function_call.
*/
FunctionRef() = default;
/**
* Construct a FunctionRef from a reference to a callable object.
*/
template <
typename Fun,
typename std::enable_if<
Conjunction<
Negation<std::is_same<FunctionRef, _t<std::decay<Fun>>>>,
is_invocable_r<ReturnType, Fun&&, Args&&...>>::value,
int>::type = 0>
constexpr /* implicit */ FunctionRef(Fun&& fun) noexcept
// `Fun` may be a const type, in which case we have to do a const_cast
// to store the address in a `void*`. This is safe because the `void*`
// will be cast back to `Fun*` (which is a const pointer whenever `Fun`
// is a const type) inside `FunctionRef::call`
: object_(
const_cast<void*>(static_cast<void const*>(std::addressof(fun)))),
call_(&FunctionRef::call<Fun>) {}
ReturnType operator()(Args... args) const {
return call_(object_, static_cast<Args&&>(args)...);
}
constexpr explicit operator bool() const {
return object_;
}
};
} // namespace folly