-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdisplay_manual_test_results.py
82 lines (70 loc) · 3.05 KB
/
display_manual_test_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import argparse
from collections import defaultdict
import datetime
import os
if __name__ == "__main__":
passed = 0
failed = 0
test_outcomes = {}
failing = []
for subdir, _, files in os.walk("artifacts"):
for file_name in files:
file_path = os.path.join(subdir, file_name)
with open(file_path, "r") as file:
for line in file.readlines():
split_line = line.split(",")[:-1]
if len(split_line) != 6:
continue
record = {
"target": split_line[0],
"mode": split_line[1],
"backend_compile": split_line[2],
"function": split_line[3],
"workflow_link": split_line[4],
"outcome": split_line[5],
}
target = record["target"]
mode = record["mode"]
backend_compile = record["backend_compile"]
function = record["function"]
outcome = record['outcome']
workflow_link = record['workflow_link']
if outcome == "passed":
passed += 1
else:
failed += 1
failing.append(function)
if function not in test_outcomes:
test_outcomes[function] = {
"jax": False,
"numpy": False,
"tensorflow": False,
}
test_outcomes[function][target if mode in ["transpile", "s2s"] else "trace"] = outcome == "passed"
fns_passing_all_targets = 0
fns_passing_jax = 0
fns_passing_numpy = 0
fns_passing_tensorflow = 0
total_fns = len(test_outcomes)
for fn, outcomes in test_outcomes.items():
if all(outcomes.values()): fns_passing_all_targets += 1
if outcomes["jax"]: fns_passing_jax += 1
if outcomes["numpy"]: fns_passing_numpy += 1
if outcomes["tensorflow"]: fns_passing_tensorflow += 1
percent_fns_passing_all_targets = round(100 * fns_passing_all_targets / total_fns, 2)
percent_fns_passing_jax = round(100 * fns_passing_jax / total_fns, 2)
percent_fns_passing_numpy = round(100 * fns_passing_numpy / total_fns, 2)
percent_fns_passing_tensorflow = round(100 * fns_passing_tensorflow / total_fns, 2)
if passed + failed > 0:
percent_passing = round(100 * passed / (passed + failed), 1)
else:
percent_passing = 0
failing = set(failing)
print("Failing:")
for failing_fn in failing:
print(function)
print(f"\n\nTotal Tests Passing: {passed}")
print(f"Total Tests Failing: {failed}")
print(f"Percent Tests Passing: {percent_passing}%")
print(f"Successfully Transpiling to all targets: {percent_fns_passing_all_targets}%")
print(f"Successfully Transpiling to TensorFlow: {percent_fns_passing_tensorflow}%")