-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmodels_mae_pvt.py
420 lines (339 loc) · 16.7 KB
/
models_mae_pvt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
from functools import partial
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.vision_transformer import Block
from timm.models.layers import DropPath, to_2tuple
from util.pos_embed import get_2d_sincos_pos_embed
from einops import rearrange
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.sr_ratio = sr_ratio
self.sr = nn.Conv2d(dim, dim, kernel_size=1)
self.norm = nn.LayerNorm(dim)
def forward(self, x, H, W):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
x_ = F.avg_pool2d(x_, self.sr_ratio)
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
x_ = self.norm(x_)
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
return x
class PVTBlock(nn.Module):
def __init__(self, dim, num_heads, sr_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, downsample=None):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, sr_ratio=sr_ratio)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
self.downsample = downsample
def forward(self, x, H, W):
if self.downsample:
x, (H, W) = self.downsample(x, H, W)
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x, (H, W)
class PatchMerge(nn.Module):
def __init__(self, patch_size=4, in_chans=3, embed_dim=96):
super().__init__()
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x, H, W):
N, L, C = x.shape
assert L == H * W
x = x.permute(0, 2, 1).reshape(N, C, H, W)
# FIXME look at relaxing size constraints
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
H, W = H // self.patch_size[0], W // self.patch_size[1]
return x, (H, W)
class PatchEmbed(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
return x
class MaskedAutoencoderPVT(nn.Module):
""" Masked Autoencoder with PVT backbone
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, stride=16,
embed_dims=[64, 128, 320, 512], depths=[3, 4, 6, 3], num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4], sr_ratios=[4, 2, 1, 1], # [8, 4, 2, 1] for finetune
decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16,
decoder_mlp_ratio=4, norm_layer=nn.LayerNorm, norm_pix_loss=False,
vis_mask_ratio=0.):
super().__init__()
self.embed_dims = embed_dims
self.stride = stride
self.kernel_stride = stride // patch_size
self.vis_mask_ratio = vis_mask_ratio
if vis_mask_ratio > 0:
self.vis_mask_token = nn.Parameter(torch.zeros(1, 1, embed_dims[0]))
print('vis_mask_token is learnable')
# --------------------------------------------------------------------------
# MAE encoder specifics
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dims[0])
num_patches = self.patch_embed.num_patches
self.embed_h = self.embed_w = int(self.patch_embed.num_patches ** 0.5)
self.patches_resolution = self.patch_embed.patches_resolution
self.num_layers = len(depths)
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dims[0]), requires_grad=False) # fixed sin-cos embedding
self.kernel = torch.ones(embed_dims[0], 1, 2, 2)
self.blocks = nn.ModuleList()
for i_layer in range(self.num_layers):
for dep in range(depths[i_layer]):
downsample_flag = (i_layer > 0) and (dep == 0)
layer = PVTBlock(dim=embed_dims[i_layer],
num_heads=num_heads[i_layer],
sr_ratio=sr_ratios[i_layer],
mlp_ratio=mlp_ratios[i_layer],
qkv_bias=True, qk_scale=None,
drop_path=0.,
downsample=PatchMerge(
patch_size=2, # if i_layer < self.num_layers - 1 else 1,
in_chans=embed_dims[i_layer - 1],
embed_dim=embed_dims[i_layer]
) if downsample_flag else None
)
self.blocks.append(layer)
self.norm = norm_layer(embed_dims[-1])
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# MAE decoder specifics
self.decoder_embed_dim = decoder_embed_dim
self.decoder_embed = nn.Linear(embed_dims[-1], 4 * decoder_embed_dim, bias=True)
self.decoder_expand = nn.PixelShuffle(2)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_num_patches = (img_size // stride) ** 2
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, self.decoder_num_patches, decoder_embed_dim), requires_grad=False)
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, decoder_mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer)
for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
self.decoder_pred = nn.Linear(decoder_embed_dim, stride**2 * in_chans, bias=True) # decoder to patch
# --------------------------------------------------------------------------
self.norm_pix_loss = norm_pix_loss
self.initialize_weights()
def initialize_weights(self):
# initialization
# initialize (and freeze) pos_embed by sin-cos embedding
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=False)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.decoder_num_patches**.5), cls_token=False)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.mask_token, std=.02)
if hasattr(self, 'vis_mask_token'):
torch.nn.init.normal_(self.vis_mask_token, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def unpatchify(self, x, stride=16):
"""
x: (N, L, patch_size**2 *3)
imgs: (N, 3, H, W)
"""
p = stride
h = w = int(x.shape[1]**.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p))
return imgs
def patchify(self, imgs, stride=16):
"""
imgs: (N, 3, H, W)
x: (N, L, patch_size**2 *3)
"""
p = stride
assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
h = w = imgs.shape[2] // p
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
x = torch.einsum('nchpwq->nhwpqc', x)
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
return x
def forward_encoder(self, x, mask):
N = x.size(0)
# embed patches
x = self.patch_embed(x)
# secondary mask
L = mask.size(1)
vis_cnt = L - len(mask[0].nonzero())
vis_final_cnt = int(vis_cnt * (1. - self.vis_mask_ratio)) # final visible
noise = torch.rand(N, L, device=x.device)
mask_noise = mask.float() + noise
ids_shuffle = torch.argsort(mask_noise, dim=1)
ids_restore = torch.argsort(ids_shuffle, dim=1)
new_mask = torch.ones([N, L], device=x.device)
new_mask[:, :vis_final_cnt] = 0
new_mask = torch.gather(new_mask, dim=1, index=ids_restore).to(torch.bool)
# and amplify mask (N, L) and new_mask (N, L), new_mask has more 1 (mask)
M = int(L ** 0.5)
scale = self.embed_h // M
mask = mask.reshape(N, M, M)
mask = mask.repeat_interleave(scale, 1).repeat_interleave(scale, 2).unsqueeze(1).contiguous()
new_mask = new_mask.reshape(N, M, M)
new_mask = new_mask.repeat_interleave(scale, 1).repeat_interleave(scale, 2).unsqueeze(1).contiguous()
# add vis_mask_token
if hasattr(self, 'vis_mask_token'):
token_mask = (~mask).int() - (~new_mask).int()
vis_mask_token = self.vis_mask_token.expand(N, self.patch_embed.num_patches, -1)
vis_mask_token = vis_mask_token.reshape(N, self.embed_h, self.embed_w, self.embed_dims[0]).permute(0, 3, 1, 2) # N C H W
vis_mask_token = vis_mask_token * token_mask
else:
vis_mask_token = 0
# prepare variables
K = self.kernel_stride
H, W = self.embed_h, self.embed_w
self.kernel = self.kernel.to(x.device)
# x to image shape (N, L, D) -> (N, C, H//2, W//2)
x = x.reshape(N, self.embed_h, self.embed_w, self.embed_dims[0]).permute(0, 3, 1, 2) # N C H W
x = x * (~new_mask) + vis_mask_token
x = rearrange(x, 'b c (h p1) (w p2) -> (b h w) c p1 p2', p1=K*2, p2=K*2)
x = F.conv2d(x, self.kernel, dilation=K, groups=self.embed_dims[0])
x = rearrange(x, '(b h w) c p1 p2 -> b c (h p1) (w p2)', h=H//(K*2), w=W//(K*2))
# pos_embed to image shape (N, L, D) -> (N, C, H//2, W//2)
ipe = self.pos_embed.expand(N, -1, -1)
ipe = ipe.reshape(N, self.embed_h, self.embed_w, self.embed_dims[0]).permute(0, 3, 1, 2)
ipe = ipe * (~mask) # attention mask here
ipe = rearrange(ipe, 'b c (h p1) (w p2) -> (b h w) c p1 p2', p1=K*2, p2=K*2)
ipe = F.conv2d(ipe, self.kernel, dilation=K, groups=self.embed_dims[0])
ipe = rearrange(ipe, '(b h w) c p1 p2 -> b c (h p1) (w p2)', h=H//(K*2), w=W//(K*2))
# add position embedding
x = x + ipe
_, _, H, W = x.size()
# reverse x to (N, L, C)
x = x.permute(0, 2, 3, 1).reshape(N, -1, self.embed_dims[0])
# apply Transformer blocks
for blk in self.blocks:
x, (H, W) = blk(x, H, W)
x = self.norm(x)
return x
def forward_decoder(self, x, mask):
# embed tokens
x = self.decoder_embed(x)
x_vis = x
N, L, nD = x_vis.shape
M = int(L**0.5)
x_vis = self.decoder_expand(x_vis.permute(0, 2, 1).reshape(-1, nD, M, M)).flatten(2)
x_vis = x_vis.permute(0, 2, 1)
_, _, D = x_vis.shape
# append mask tokens to sequence
expand_pos_embed = self.decoder_pos_embed.expand(N, -1, -1)
pos_vis = expand_pos_embed[~mask].reshape(N, -1, D)
pos_mask = expand_pos_embed[mask].reshape(N, -1, D)
x = torch.cat([x_vis + pos_vis, self.mask_token + pos_mask], dim=1)
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
# predictor projection
x = self.decoder_pred(x)
return x, pos_mask.shape[1]
def forward_loss(self, imgs, pred, mask):
"""
imgs: [N, 3, H, W]
pred: [N, mask, p*p*3]
mask: [N, L], 0 is keep, 1 is remove,
"""
target = self.patchify(imgs, self.stride)
N, _, D = target.shape
target = target[mask].reshape(N, -1, D)
if self.norm_pix_loss:
mean = target.mean(dim=-1, keepdim=True)
var = target.var(dim=-1, keepdim=True)
target = (target - mean) / (var + 1.e-6)**.5 # (N, L, p*p*3)
loss = (pred - target) ** 2
loss = loss.mean()
return loss
def forward(self, imgs, mask):
latent = self.forward_encoder(imgs, mask) # returned mask may change
pred, mask_num = self.forward_decoder(latent, mask) # [N, L, p*p*3]
loss = self.forward_loss(imgs, pred[:, -mask_num:], mask)
return loss, pred, mask
def mae_pvt_small_256_dec512d2b(**kwargs):
model = MaskedAutoencoderPVT(
img_size=256, patch_size=4, in_chans=3, stride=16,
embed_dims=[64, 128, 320, 512], depths=[3, 4, 6, 3], num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4], sr_ratios=[4, 2, 1, 1], # [8, 4, 2, 1] for finetune
decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16,
decoder_mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
# set recommended archs
mae_pvt_small_256 = mae_pvt_small_256_dec512d2b # decoder: 512 dim, 2 blocks