-
Notifications
You must be signed in to change notification settings - Fork 804
/
2_evaluate_pretrained_policy.py
121 lines (95 loc) · 4.01 KB
/
2_evaluate_pretrained_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""
This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
"""
from pathlib import Path
import gym_pusht # noqa: F401
import gymnasium as gym
import imageio
import numpy
import torch
from huggingface_hub import snapshot_download
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
# Create a directory to store the video of the evaluation
output_directory = Path("outputs/eval/example_pusht_diffusion")
output_directory.mkdir(parents=True, exist_ok=True)
# Download the diffusion policy for pusht environment
pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
policy.eval()
# Check if GPU is available
if torch.cuda.is_available():
device = torch.device("cuda")
print("GPU is available. Device set to:", device)
else:
device = torch.device("cpu")
print(f"GPU is not available. Device set to: {device}. Inference will be slower than on GPU.")
# Decrease the number of reverse-diffusion steps (trades off a bit of quality for 10x speed)
policy.diffusion.num_inference_steps = 10
policy.to(device)
# Initialize evaluation environment to render two observation types:
# an image of the scene and state/position of the agent. The environment
# also automatically stops running after 300 interactions/steps.
env = gym.make(
"gym_pusht/PushT-v0",
obs_type="pixels_agent_pos",
max_episode_steps=300,
)
# Reset the policy and environmens to prepare for rollout
policy.reset()
numpy_observation, info = env.reset(seed=42)
# Prepare to collect every rewards and all the frames of the episode,
# from initial state to final state.
rewards = []
frames = []
# Render frame of the initial state
frames.append(env.render())
step = 0
done = False
while not done:
# Prepare observation for the policy running in Pytorch
state = torch.from_numpy(numpy_observation["agent_pos"])
image = torch.from_numpy(numpy_observation["pixels"])
# Convert to float32 with image from channel first in [0,255]
# to channel last in [0,1]
state = state.to(torch.float32)
image = image.to(torch.float32) / 255
image = image.permute(2, 0, 1)
# Send data tensors from CPU to GPU
state = state.to(device, non_blocking=True)
image = image.to(device, non_blocking=True)
# Add extra (empty) batch dimension, required to forward the policy
state = state.unsqueeze(0)
image = image.unsqueeze(0)
# Create the policy input dictionary
observation = {
"observation.state": state,
"observation.image": image,
}
# Predict the next action with respect to the current observation
with torch.inference_mode():
action = policy.select_action(observation)
# Prepare the action for the environment
numpy_action = action.squeeze(0).to("cpu").numpy()
# Step through the environment and receive a new observation
numpy_observation, reward, terminated, truncated, info = env.step(numpy_action)
print(f"{step=} {reward=} {terminated=}")
# Keep track of all the rewards and frames
rewards.append(reward)
frames.append(env.render())
# The rollout is considered done when the success state is reach (i.e. terminated is True),
# or the maximum number of iterations is reached (i.e. truncated is True)
done = terminated | truncated | done
step += 1
if terminated:
print("Success!")
else:
print("Failure!")
# Get the speed of environment (i.e. its number of frames per second).
fps = env.metadata["render_fps"]
# Encode all frames into a mp4 video.
video_path = output_directory / "rollout.mp4"
imageio.mimsave(str(video_path), numpy.stack(frames), fps=fps)
print(f"Video of the evaluation is available in '{video_path}'.")