-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuron.py
128 lines (115 loc) · 4.27 KB
/
neuron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import tensorflow as tf
import os
import numpy as np
import pandas as pd
import pickle
bath_path = r'C:\Users\ext_renqq\Desktop\cifar-10-batches-py'
# print(os.listdir(bath_path))
# 二分类任务
def load_data(filename):
with open(filename, 'rb') as f:
data = pickle.load(f, encoding='bytes')
data['data'] = data[b'data']
data['labels'] = data[b'labels']
data['batch_label'] = data[b'batch_label']
data['filenames'] = data[b'filenames']
return data['data'], data['labels']
class CifarData(object):
def __init__(self, filenames, need_shuffle):
all_data = []
all_labels = []
for filename in filenames:
data, labels = load_data(filename)
all_data.append(data)
all_labels.append(labels)
self._data = np.vstack(all_data)
self._data = self._data / 127.5 - 1
self._labels = np.hstack(all_labels)
print(self._data.shape)
print(self._labels.shape)
self._num_examples = self._data.shape[0]
self._need_shuffle = need_shuffle
self._indicator = 0
if self._need_shuffle:
self._shuffle_data()
def _shuffle_data(self):
p = np.random.permutation(self._num_examples)
self._data = self._data[p]
self._labels = self._labels[p]
def next_batch(self, batch_size):
end_indicator = self._indicator + batch_size
if end_indicator > self._num_examples:
if self._need_shuffle:
self._shuffle_data()
self._indicator = 0
end_indicator = batch_size
else:
raise Exception('have no more examples')
if end_indicator > self._num_examples:
raise Exception('batch size is larger than all examples')
batch_data = self._data[self._indicator:end_indicator]
batch_labels = self._labels[self._indicator:end_indicator]
self._indicator = end_indicator
return batch_data, batch_labels
train_filenames = [os.path.join(bath_path, 'data_batch_%d' % i) for i in range(1, 6)]
test_filenames = [os.path.join(bath_path, 'test_batch')]
train_data = CifarData(train_filenames, True)
test_data = CifarData(test_filenames, False)
x = tf.placeholder(tf.float32, [None, 3072])
# [None]
y = tf.placeholder(tf.int64, [None])
# (3072, 1)
w = tf.get_variable('w', [x.get_shape()[-1], 1],
initializer=tf.random_normal_initializer(0, 1))
# (1, )
b = tf.get_variable('b', [1],
initializer=tf.constant_initializer(0.0))
# [None, 3072] * [3072, 1] = [None, 1]
y_ = tf.matmul(x, w) + b
# [None, 1]
p_y_1 = tf.nn.sigmoid(y_)
# [None, 1]
y_reshaped = tf.reshape(y, (-1, 1))
y_reshaped_float = tf.cast(y_reshaped, tf.float32)
loss = tf.reduce_mean(tf.square(y_reshaped_float - p_y_1))
# bool
predict = p_y_1 > 0.5
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(tf.cast(predict, tf.int64), y_reshaped)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
with tf.name_scope('train_op'):
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
init = tf.global_variables_initializer()
batch_size = 20
train_steps = 10000
test_steps = 100
with tf.Session() as sess:
sess.run(init)
for i in range(train_steps):
batch_data, batch_labels = train_data.next_batch(batch_size)
loss_val, acc_val, _ = sess.run(
[loss, accuracy, train_op],
feed_dict={
x: batch_data,
y: batch_labels
}
)
if (i + 1) % 500 == 0:
print('[Train] Step: %d, loss:%.5f, acc:%.5f'\
% (i + 1, loss_val, acc_val))
if (i + 1) % 5000 == 0:
test_data = CifarData(test_filenames, False)
all_test_acc_val = []
for j in range(test_steps):
test_batch_data, test_batch_labels \
= test_data.next_batch(batch_size)
test_acc_val = sess.run(
[accuracy],
feed_dict={
x: test_batch_data,
y:test_batch_labels
}
)
all_test_acc_val.append(test_acc_val)
test_acc = np.mean(all_test_acc_val)
print('[Test] Step: %d, acc: %.4f' % (i + 1, test_acc))