-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2020-12-7 RNN文本分类_pure_lstm.py
393 lines (346 loc) · 15 KB
/
2020-12-7 RNN文本分类_pure_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# 构建计算图——LSTM模型
# embedding
# LSTM
# fc
# train_op
# 训练流程代码
# 数据集封装
# api: next_batch(batch_size)
# 词表封装:
# api: sentence2id(text_sentence): 句子转换id
# 类别的封装:
# api: category2id(text_category).
import tensorflow as tf
import os
import sys
import numpy as np
import math
tf.logging.set_verbosity(tf.logging.INFO)
def get_default_params():
return tf.contrib.training.HParams(
# 词向量大小
num_embedding_size=16,
# 步长
num_timesteps=50,
# lstm单元输出维度(又叫输出神经元数)
num_lstm_nodes=[32, 32],
# 层数
num_lstm_layers=2,
# 全连接输出维度,最后一维
num_fc_nodes=32,
batch_size=100,
# 控制梯度,梯度上线
clip_lstm_grads=1.0,
# 学习率
learning_rate=0.001,
# 词频最低下限
num_word_threshold=10
)
hps = get_default_params()
train_file = r'C:\Users\ext_renqq\Desktop\文本分类数据/cnews.train.seg.txt'
val_file = r'C:\Users\ext_renqq\Desktop\文本分类数据/cnews.val.seg.txt'
test_file = r'C:\Users\ext_renqq\Desktop\文本分类数据/cnews.test.seg.txt'
vocab_file = r'C:\Users\ext_renqq\Desktop\文本分类数据/cnews.vocab.txt'
category_file = r'C:\Users\ext_renqq\Desktop\文本分类数据/cnews.category.txt'
output_folder = r'C:\Users\ext_renqq\Desktop\文本分类数据/run_text_rnn'
if not os.path.exists(output_folder):
os.mkdir(output_folder)
class Vocab(object):
def __init__(self, filename, num_word_threshold):
# 词典
self._word_to_id = {}
# <UNK> 的id(初始值)
self._unk = -1
# 频率下限
self._num_word_threshold = num_word_threshold
# 将词典读出来存到dict里
self._read_dict(filename)
def _read_dict(self, filename):
with open(filename, 'r', encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
word, frequency = line.strip('\r\n').split('\t')
word = word
frequency = int(frequency)
# 低于下限不要
if frequency < self._num_word_threshold:
continue
idx = len(self._word_to_id)
if word == '<UNK>':
# 刷新UNK的id
self._unk = idx
self._word_to_id[word] = idx
def word_to_id(self, word):
# 如果没有word返回UNK
return self._word_to_id.get(word, self._unk)
@property
def unk(self):
return self._unk
def size(self):
return len(self._word_to_id)
def sentence_to_id(self, sentence):
# 把分词字典里面的id取出来变成字典
word_ids = [self.word_to_id(cur_word) \
for cur_word in sentence.split()]
return word_ids
class CategoryDict(object):
def __init__(self, filename):
# 读取类别并存入字典,给每个一个id
self._category_to_id = {}
with open(filename, 'r', encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
category = line.strip('\r\n')
idx = len(self._category_to_id)
self._category_to_id[category] = idx
def size(self):
return len(self._category_to_id)
def category_to_id(self, category):
# 传入类别返回id
if category not in self._category_to_id:
raise Exception("%s is not in our category list" % category)
return self._category_to_id[category]
# 建立词典
vocab = Vocab(vocab_file, hps.num_word_threshold)
vocab_size = vocab.size()
# 打日志
tf.logging.info('vocab_size: %d' % vocab_size)
# 建立类别词典
category_vocab = CategoryDict(category_file)
num_classes = category_vocab.size()
tf.logging.info('num_classes: %d' % num_classes)
test_str = '体育'
tf.logging.info(
'label: %s, id: %d' % (
test_str,
category_vocab.category_to_id(test_str)))
class TextDataSet(object):
def __init__(self, filename, vocab, category_vocab, num_timesteps):
self._vocab = vocab
self._category_vocab = category_vocab
self._num_timesteps = num_timesteps
# matrix
self._inputs = []
# vector
self._outputs = []
self._indicator = 0
self._parse_file(filename)
def _parse_file(self, filename):
tf.logging.info('Loading data from %s', filename)
with open(filename, 'r', encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
label, content = line.strip('\r\n').split('\t')
# id_label = self._category_vocab.category_to_id(label)
# id_words = self._vocab.sentence_to_id(content)
# id_words = id_words[0: self._num_timesteps]
# padding_num = self._num_timesteps - len(id_words)
# id_words = id_words + [
# self._vocab.unk for i in range(padding_num)]
# self._inputs.append(id_words)
# self._outputs.append(id_label)
# 对于训练集的数据进行了切割,加个判断
if label in self._category_vocab._category_to_id:
# 将传入的类别转化为对应的id
id_label = self._category_vocab.category_to_id(label)
# 将传入的句子转化为一个词一个词对应的id
id_words = self._vocab.sentence_to_id(content)
# 控制句长在50,超过截断
id_words = id_words[0: self._num_timesteps]
padding_num = self._num_timesteps - len(id_words)
id_words = id_words + [
self._vocab.unk for i in range(padding_num)]
# 将句子的向量放到输入list
self._inputs.append(id_words)
# 将类别的向量放到输出的list
self._outputs.append(id_label)
self._inputs = np.asarray(self._inputs, dtype=np.int32)
self._outputs = np.asarray(self._outputs, dtype=np.int32)
self._random_shuffle()
def _random_shuffle(self):
p = np.random.permutation(len(self._inputs))
self._inputs = self._inputs[p]
self._outputs = self._outputs[p]
def next_batch(self, batch_size):
end_indicator = self._indicator + batch_size
# 当获取的指针超过数据集大小时,归0
if end_indicator > len(self._inputs):
self._random_shuffle()
self._indicator = 0
end_indicator = batch_size
# 还归0超过就报错
if end_indicator > len(self._inputs):
raise Exception("batch_size: %d is too large" % batch_size)
batch_inputs = self._inputs[self._indicator: end_indicator]
batch_outputs = self._outputs[self._indicator: end_indicator]
self._indicator = end_indicator
return batch_inputs, batch_outputs
train_dataset = TextDataSet(
train_file, vocab, category_vocab, hps.num_timesteps)
val_dataset = TextDataSet(
val_file, vocab, category_vocab, hps.num_timesteps)
test_dataset = TextDataSet(
test_file, vocab, category_vocab, hps.num_timesteps)
print(train_dataset.next_batch(2))
print(val_dataset.next_batch(2))
print(test_dataset.next_batch(2))
def create_model(hps, vocab_size, num_classes):
num_timesteps = hps.num_timesteps
batch_size = hps.batch_size
inputs = tf.placeholder(tf.int32, (batch_size, num_timesteps))
outputs = tf.placeholder(tf.int32, (batch_size,))
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
global_step = tf.Variable(
tf.zeros([], tf.int64), name='global_step', trainable=False)
# embedding的值初始化到-1到1
embedding_initializer = tf.random_uniform_initializer(-1.0, 1.0)
with tf.variable_scope(
'embedding', initializer=embedding_initializer):
embeddings = tf.get_variable(
'embedding',
[vocab_size, hps.num_embedding_size],
tf.float32)
# [1, 10, 7] -> [embeddings[1], embeddings[10], embeddings[7]]
# tf.nn.embedding_lookup函数的用法主要是选取一个张量里面索引对应的元素
embed_inputs = tf.nn.embedding_lookup(embeddings, inputs)
scale = 1.0 / math.sqrt(hps.num_embedding_size + hps.num_lstm_nodes[-1]) / 3.0
lstm_init = tf.random_uniform_initializer(-scale, scale)
def _generate_params_for_lstm_cell(x_size, h_size, bias_size):
"""generates parameters for pure lstm implementation."""
x_w = tf.get_variable('x_weights', x_size)
h_w = tf.get_variable('h_weights', h_size)
b = tf.get_variable('biases', bias_size,
initializer=tf.constant_initializer(0.0))
return x_w, h_w, b
with tf.variable_scope('lstm_rnn', initializer=lstm_init):
"""
cells = []
for i in range(hps.num_lstm_layers):
cell = tf.contrib.rnn.BasicLSTMCell(
hps.num_lstm_nodes[i],
state_is_tuple = True)
cell = tf.contrib.rnn.DropoutWrapper(
cell,
output_keep_prob = keep_prob)
cells.append(cell)
cell = tf.contrib.rnn.MultiRNNCell(cells)
initial_state = cell.zero_state(batch_size, tf.float32)
# rnn_outputs: [batch_size, num_timesteps, lstm_outputs[-1]]
rnn_outputs, _ = tf.nn.dynamic_rnn(
cell, embed_inputs, initial_state = initial_state)
last = rnn_outputs[:, -1, :]
"""
with tf.variable_scope('inputs'):
ix, ih, ib = _generate_params_for_lstm_cell(
x_size=[hps.num_embedding_size, hps.num_lstm_nodes[0]],
h_size=[hps.num_lstm_nodes[0], hps.num_lstm_nodes[0]],
bias_size=[1, hps.num_lstm_nodes[0]]
)
with tf.variable_scope('outputs'):
ox, oh, ob = _generate_params_for_lstm_cell(
x_size=[hps.num_embedding_size, hps.num_lstm_nodes[0]],
h_size=[hps.num_lstm_nodes[0], hps.num_lstm_nodes[0]],
bias_size=[1, hps.num_lstm_nodes[0]]
)
with tf.variable_scope('forget'):
fx, fh, fb = _generate_params_for_lstm_cell(
x_size=[hps.num_embedding_size, hps.num_lstm_nodes[0]],
h_size=[hps.num_lstm_nodes[0], hps.num_lstm_nodes[0]],
bias_size=[1, hps.num_lstm_nodes[0]]
)
with tf.variable_scope('memory'):
cx, ch, cb = _generate_params_for_lstm_cell(
x_size=[hps.num_embedding_size, hps.num_lstm_nodes[0]],
h_size=[hps.num_lstm_nodes[0], hps.num_lstm_nodes[0]],
bias_size=[1, hps.num_lstm_nodes[0]]
)
state = tf.Variable(
tf.zeros([batch_size, hps.num_lstm_nodes[0]]),
trainable=False
)
h = tf.Variable(
tf.zeros([batch_size, hps.num_lstm_nodes[0]]),
trainable=False
)
for i in range(num_timesteps):
# [batch_size, 1, embed_size]
embed_input = embed_inputs[:, i, :]
embed_input = tf.reshape(embed_input,
[batch_size, hps.num_embedding_size])
forget_gate = tf.sigmoid(
tf.matmul(embed_input, fx) + tf.matmul(h, fh) + fb)
input_gate = tf.sigmoid(
tf.matmul(embed_input, ix) + tf.matmul(h, ih) + ib)
output_gate = tf.sigmoid(
tf.matmul(embed_input, ox) + tf.matmul(h, oh) + ob)
mid_state = tf.tanh(
tf.matmul(embed_input, cx) + tf.matmul(h, ch) + cb)
state = mid_state * input_gate + state * forget_gate
h = output_gate * tf.tanh(state)
last = h
# 输出和全连接层拼接 均匀分布差不多,只是这个初始化方法不需要指定最小最大值,是通过计算出来的。
fc_init = tf.uniform_unit_scaling_initializer(factor=1.0)
with tf.variable_scope('fc', initializer=fc_init):
fc1 = tf.layers.dense(last,
hps.num_fc_nodes,
activation=tf.nn.relu,
name='fc1')
fc1_dropout = tf.contrib.layers.dropout(fc1, keep_prob)
logits = tf.layers.dense(fc1_dropout,
num_classes,
name='fc2')
with tf.name_scope('metrics'):
softmax_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=outputs)
loss = tf.reduce_mean(softmax_loss)
# [0, 1, 5, 4, 2] -> argmax: 2
y_pred = tf.argmax(tf.nn.softmax(logits),
1,
output_type=tf.int32)
correct_pred = tf.equal(outputs, y_pred)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
with tf.name_scope('train_op'):
# 获得所有可训练的变量(优化器优化列表中的变量)
tvars = tf.trainable_variables()
# 看看这些变量叫啥
for var in tvars:
tf.logging.info('variable name: %s' % (var.name))
# tf.gradients求导(梯度下降,对每个训练变量求偏导,每个方向都往下走)
# 不超过hps.clip_lstm_grads,防止梯度爆炸
grads, _ = tf.clip_by_global_norm(
tf.gradients(loss, tvars), hps.clip_lstm_grads)
# Adam优化器
optimizer = tf.train.AdamOptimizer(hps.learning_rate)
# 这里是应用,将梯度grads应用到变量上,让函数吧global_step回调
train_op = optimizer.apply_gradients(
zip(grads, tvars), global_step=global_step)
return ((inputs, outputs, keep_prob),
(loss, accuracy),
(train_op, global_step))
placeholders, metrics, others = create_model(
hps, vocab_size, num_classes)
inputs, outputs, keep_prob = placeholders
loss, accuracy = metrics
train_op, global_step = others
init_op = tf.global_variables_initializer()
train_keep_prob_value = 0.8
test_keep_prob_value = 1.0
num_train_steps = 10000
# Train: 99.7%
# Valid: 92.7%
# Test: 93.2%
with tf.Session() as sess:
sess.run(init_op)
for i in range(num_train_steps):
batch_inputs, batch_labels = train_dataset.next_batch(
hps.batch_size)
outputs_val = sess.run([loss, accuracy, train_op, global_step],
feed_dict = {
inputs: batch_inputs,
outputs: batch_labels,
keep_prob: train_keep_prob_value,
})
loss_val, accuracy_val, _, global_step_val = outputs_val
if global_step_val % 20 == 0:
tf.logging.info("Step: %5d, loss: %3.3f, accuracy: %3.3f"
% (global_step_val, loss_val, accuracy_val))