Given a n-ary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).
Example 1:
Input: root = [1,null,3,2,4,null,5,6]
Output: 3
Example 2:
Input: root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
Output: 5
Constraints:
- The depth of the n-ary tree is less than or equal to
1000
. - The total number of nodes is between
[0, 10^4]
.
O(n) Time, O(1) Space - Recursive:
/**
* Definition for a Node.
* public class Node {
* public var val: Int
* public var children: [Node]
* public init(_ val: Int) {
* self.val = val
* self.children = []
* }
* }
*/
class Solution {
func maxDepth(_ root: Node?) -> Int {
guard let node = root else { return 0 }
return 1 + node.children.reduce(0) { max($0, maxDepth($1)) }
}
}
O(n) Time, O(n) Space - Iterative:
/**
* Definition for a Node.
* public class Node {
* public var val: Int
* public var children: [Node]
* public init(_ val: Int) {
* self.val = val
* self.children = []
* }
* }
*/
class Solution {
func maxDepth(_ root: Node?) -> Int {
guard let root = root else { return 0 }
var queue = [root], depth = 0
while !queue.isEmpty {
let length = queue.count
for _ in 0..<length {
let curr = queue.removeFirst()
curr.children.lazy.compactMap { $0 }.forEach {
queue.append($0)
}
}
depth+=1
}
return depth
}
}