Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
Implement the MinStack
class:
MinStack()
initializes the stack object.void push(int val)
pushes the elementval
onto the stack.void pop()
removes the element on the top of the stack.int top()
gets the top element of the stack.int getMin()
retrieves the minimum element in the stack.
You must implement a solution with O(1)
time complexity for each function.
Example 1:
Input
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]
Output
[null,null,null,null,-3,null,0,-2]
Explanation
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); // return -3
minStack.pop();
minStack.top(); // return 0
minStack.getMin(); // return -2
Constraints:
-pow(2, 31) <= val <= pow(2, 31) - 1
- Methods
pop
,top
andgetMin
operations will always be called on non-empty stacks. - At most
3 * pow(10, 4)
calls will be made topush
,pop
,top
, andgetMin
.
extension MinStack {
struct Element {
let val: Int
let min: Int
}
}
class MinStack {
private var stack: [Element]
private var last: Element {
if let last = stack.last {
return last
} else {
fatalError()
}
}
init() {
stack = []
}
func push(_ val: Int) {
let element: Element
if let last = stack.last, last.min < val {
element = Element(val: val, min: last.min)
} else {
element = Element(val: val, min: val)
}
stack.append(element)
}
func pop() {
if stack.isEmpty {
fatalError()
} else {
_ = stack.removeLast()
}
}
func top() -> Int {
last.val
}
func getMin() -> Int {
last.min
}
}
/**
* Your MinStack object will be instantiated and called as such:
* let obj = MinStack()
* obj.push(val)
* obj.pop()
* let ret_3: Int = obj.top()
* let ret_4: Int = obj.getMin()
*/